Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries

Driven by the desire to find efficient alternatives to lithium-ion batteries for large-scale energy storage systems, sodium-ion batteries (SIBs) have been extensively researched with the aim of realizing similar electrochemical properties to those of lithium. While Sn-based anodes for SIBs offer rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-04, Vol.8 (16), p.7861-7869
Hauptverfasser: Luu, Thi Hoai Thuong, Duong, Dinh Loc, Lee, Tae Hoon, Pham, Duy Tho, Sahoo, Ramkrishna, Han, Gyeongtak, Kim, Young-Min, Lee, Young Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7869
container_issue 16
container_start_page 7861
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Luu, Thi Hoai Thuong
Duong, Dinh Loc
Lee, Tae Hoon
Pham, Duy Tho
Sahoo, Ramkrishna
Han, Gyeongtak
Kim, Young-Min
Lee, Young Hee
description Driven by the desire to find efficient alternatives to lithium-ion batteries for large-scale energy storage systems, sodium-ion batteries (SIBs) have been extensively researched with the aim of realizing similar electrochemical properties to those of lithium. While Sn-based anodes for SIBs offer reasonable theoretical capacity (847 mA h g −1 for Na 15 Sn 4 ), their sluggish kinetics, low conductivity, and large volume expansion represent unresolved drawbacks. To address these issues, we propose an effective approach to alleviate the volume pulverization and enhance the capacity of SIB anodes by anchoring SnS nanoparticles densely on a porous carbon nanotube (CNT) film (SnS@CNT). As a result of the formation of inherent chemical bonds between SnS and the surface of the CNTs, the well-dispersed SnS nanoparticles anchored on the CNT network help to significantly enlarge the contact surface area between the active material and sodium ions. This free-standing film yields a high capacity of up to 762 mA h g −1 , owing to its improved conductivity and enlarged surface area, which are attributed to the increase in capacity of 146%, compared to the capacity of SnS nanoparticles in the absence of CNT (521 mA h g −1 ), at a current density of 100 mA g −1 . The SnS@CNT anode exhibits excellent cyclability at a current density of 1 A g −1 , with capacities of 666 and 615 mA h g −1 after 100 (100% retention) and 500 cycles (92% retention), respectively, in addition to excellent kinetics. The hybrid SnS@CNT film used as the SIB anode is binder-free, allowing for a greater concentration of active materials that contribute to battery performance. An effective approach to alleviate the volume expansion of alloying material and magnify the capacity of sodium-ions batteries anode by anchoring the SnS nanoparticles densely on porous carbon nanotubes film.
doi_str_mv 10.1039/c9ta13136a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9TA13136A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395289695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-fa6e4b7419e0db5ffa65ab5354a8d4d0e50018805f00c42e8165c2c7e9a026d3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWLQX78KKN2F1skm2ybEUv6Diob0v2WTWbmmTNUkP_vemVurNubwZ3o838Ai5onBPgakHo5KmjLJan5BRBQLKCVf16XGX8pyMY1xDHglQKzUi9s07b_s4YIhoi4VbFE47P-iQerPBWGhnVj5ky7vC6NBm2QNp12az86FY9R-rMmBCl_psxpy225b7tdUpYegxXpKzTm8ijn_1giyfHpezl3L-_vw6m85LwzhPZadr5O2EU4VgW9HlW-hWMMG1tNwCCgAqJYgOwPAKJa2FqcwElYaqtuyC3B5ih-A_dxhTs_a74PLHpmJKVFLVSmTq7kCZ4GMM2DVD6Lc6fDUUmn2PzUwtpz89TjN8c4BDNEfur-dmsF1mrv9j2DfkH3vz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395289695</pqid></control><display><type>article</type><title>Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Luu, Thi Hoai Thuong ; Duong, Dinh Loc ; Lee, Tae Hoon ; Pham, Duy Tho ; Sahoo, Ramkrishna ; Han, Gyeongtak ; Kim, Young-Min ; Lee, Young Hee</creator><creatorcontrib>Luu, Thi Hoai Thuong ; Duong, Dinh Loc ; Lee, Tae Hoon ; Pham, Duy Tho ; Sahoo, Ramkrishna ; Han, Gyeongtak ; Kim, Young-Min ; Lee, Young Hee</creatorcontrib><description>Driven by the desire to find efficient alternatives to lithium-ion batteries for large-scale energy storage systems, sodium-ion batteries (SIBs) have been extensively researched with the aim of realizing similar electrochemical properties to those of lithium. While Sn-based anodes for SIBs offer reasonable theoretical capacity (847 mA h g −1 for Na 15 Sn 4 ), their sluggish kinetics, low conductivity, and large volume expansion represent unresolved drawbacks. To address these issues, we propose an effective approach to alleviate the volume pulverization and enhance the capacity of SIB anodes by anchoring SnS nanoparticles densely on a porous carbon nanotube (CNT) film (SnS@CNT). As a result of the formation of inherent chemical bonds between SnS and the surface of the CNTs, the well-dispersed SnS nanoparticles anchored on the CNT network help to significantly enlarge the contact surface area between the active material and sodium ions. This free-standing film yields a high capacity of up to 762 mA h g −1 , owing to its improved conductivity and enlarged surface area, which are attributed to the increase in capacity of 146%, compared to the capacity of SnS nanoparticles in the absence of CNT (521 mA h g −1 ), at a current density of 100 mA g −1 . The SnS@CNT anode exhibits excellent cyclability at a current density of 1 A g −1 , with capacities of 666 and 615 mA h g −1 after 100 (100% retention) and 500 cycles (92% retention), respectively, in addition to excellent kinetics. The hybrid SnS@CNT film used as the SIB anode is binder-free, allowing for a greater concentration of active materials that contribute to battery performance. An effective approach to alleviate the volume expansion of alloying material and magnify the capacity of sodium-ions batteries anode by anchoring the SnS nanoparticles densely on porous carbon nanotubes film.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta13136a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alternative energy sources ; Anchoring ; Anodes ; Batteries ; Carbon nanotubes ; Chemical bonds ; Conductivity ; Current density ; Diffusion coefficient ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Energy loss ; Energy storage ; Ion diffusion ; Kinetics ; Lithium ; Low conductivity ; Mathematical analysis ; Nanoparticles ; Nanotechnology ; Nanotubes ; Oxidation ; Rechargeable batteries ; Retention ; Scanning electron microscopy ; Sodium ; Sodium diffusion ; Sodium-ion batteries ; Stability ; Storage batteries ; Storage systems ; Surface area</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-04, Vol.8 (16), p.7861-7869</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-fa6e4b7419e0db5ffa65ab5354a8d4d0e50018805f00c42e8165c2c7e9a026d3</citedby><cites>FETCH-LOGICAL-c344t-fa6e4b7419e0db5ffa65ab5354a8d4d0e50018805f00c42e8165c2c7e9a026d3</cites><orcidid>0000-0003-3220-9004 ; 0000-0001-7403-8157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Luu, Thi Hoai Thuong</creatorcontrib><creatorcontrib>Duong, Dinh Loc</creatorcontrib><creatorcontrib>Lee, Tae Hoon</creatorcontrib><creatorcontrib>Pham, Duy Tho</creatorcontrib><creatorcontrib>Sahoo, Ramkrishna</creatorcontrib><creatorcontrib>Han, Gyeongtak</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><title>Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Driven by the desire to find efficient alternatives to lithium-ion batteries for large-scale energy storage systems, sodium-ion batteries (SIBs) have been extensively researched with the aim of realizing similar electrochemical properties to those of lithium. While Sn-based anodes for SIBs offer reasonable theoretical capacity (847 mA h g −1 for Na 15 Sn 4 ), their sluggish kinetics, low conductivity, and large volume expansion represent unresolved drawbacks. To address these issues, we propose an effective approach to alleviate the volume pulverization and enhance the capacity of SIB anodes by anchoring SnS nanoparticles densely on a porous carbon nanotube (CNT) film (SnS@CNT). As a result of the formation of inherent chemical bonds between SnS and the surface of the CNTs, the well-dispersed SnS nanoparticles anchored on the CNT network help to significantly enlarge the contact surface area between the active material and sodium ions. This free-standing film yields a high capacity of up to 762 mA h g −1 , owing to its improved conductivity and enlarged surface area, which are attributed to the increase in capacity of 146%, compared to the capacity of SnS nanoparticles in the absence of CNT (521 mA h g −1 ), at a current density of 100 mA g −1 . The SnS@CNT anode exhibits excellent cyclability at a current density of 1 A g −1 , with capacities of 666 and 615 mA h g −1 after 100 (100% retention) and 500 cycles (92% retention), respectively, in addition to excellent kinetics. The hybrid SnS@CNT film used as the SIB anode is binder-free, allowing for a greater concentration of active materials that contribute to battery performance. An effective approach to alleviate the volume expansion of alloying material and magnify the capacity of sodium-ions batteries anode by anchoring the SnS nanoparticles densely on porous carbon nanotubes film.</description><subject>Alternative energy sources</subject><subject>Anchoring</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon nanotubes</subject><subject>Chemical bonds</subject><subject>Conductivity</subject><subject>Current density</subject><subject>Diffusion coefficient</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy loss</subject><subject>Energy storage</subject><subject>Ion diffusion</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Low conductivity</subject><subject>Mathematical analysis</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Oxidation</subject><subject>Rechargeable batteries</subject><subject>Retention</subject><subject>Scanning electron microscopy</subject><subject>Sodium</subject><subject>Sodium diffusion</subject><subject>Sodium-ion batteries</subject><subject>Stability</subject><subject>Storage batteries</subject><subject>Storage systems</subject><subject>Surface area</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWLQX78KKN2F1skm2ybEUv6Diob0v2WTWbmmTNUkP_vemVurNubwZ3o838Ai5onBPgakHo5KmjLJan5BRBQLKCVf16XGX8pyMY1xDHglQKzUi9s07b_s4YIhoi4VbFE47P-iQerPBWGhnVj5ky7vC6NBm2QNp12az86FY9R-rMmBCl_psxpy225b7tdUpYegxXpKzTm8ijn_1giyfHpezl3L-_vw6m85LwzhPZadr5O2EU4VgW9HlW-hWMMG1tNwCCgAqJYgOwPAKJa2FqcwElYaqtuyC3B5ih-A_dxhTs_a74PLHpmJKVFLVSmTq7kCZ4GMM2DVD6Lc6fDUUmn2PzUwtpz89TjN8c4BDNEfur-dmsF1mrv9j2DfkH3vz</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>Luu, Thi Hoai Thuong</creator><creator>Duong, Dinh Loc</creator><creator>Lee, Tae Hoon</creator><creator>Pham, Duy Tho</creator><creator>Sahoo, Ramkrishna</creator><creator>Han, Gyeongtak</creator><creator>Kim, Young-Min</creator><creator>Lee, Young Hee</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3220-9004</orcidid><orcidid>https://orcid.org/0000-0001-7403-8157</orcidid></search><sort><creationdate>20200428</creationdate><title>Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries</title><author>Luu, Thi Hoai Thuong ; Duong, Dinh Loc ; Lee, Tae Hoon ; Pham, Duy Tho ; Sahoo, Ramkrishna ; Han, Gyeongtak ; Kim, Young-Min ; Lee, Young Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-fa6e4b7419e0db5ffa65ab5354a8d4d0e50018805f00c42e8165c2c7e9a026d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative energy sources</topic><topic>Anchoring</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon nanotubes</topic><topic>Chemical bonds</topic><topic>Conductivity</topic><topic>Current density</topic><topic>Diffusion coefficient</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy loss</topic><topic>Energy storage</topic><topic>Ion diffusion</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Low conductivity</topic><topic>Mathematical analysis</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Oxidation</topic><topic>Rechargeable batteries</topic><topic>Retention</topic><topic>Scanning electron microscopy</topic><topic>Sodium</topic><topic>Sodium diffusion</topic><topic>Sodium-ion batteries</topic><topic>Stability</topic><topic>Storage batteries</topic><topic>Storage systems</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luu, Thi Hoai Thuong</creatorcontrib><creatorcontrib>Duong, Dinh Loc</creatorcontrib><creatorcontrib>Lee, Tae Hoon</creatorcontrib><creatorcontrib>Pham, Duy Tho</creatorcontrib><creatorcontrib>Sahoo, Ramkrishna</creatorcontrib><creatorcontrib>Han, Gyeongtak</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luu, Thi Hoai Thuong</au><au>Duong, Dinh Loc</au><au>Lee, Tae Hoon</au><au>Pham, Duy Tho</au><au>Sahoo, Ramkrishna</au><au>Han, Gyeongtak</au><au>Kim, Young-Min</au><au>Lee, Young Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-04-28</date><risdate>2020</risdate><volume>8</volume><issue>16</issue><spage>7861</spage><epage>7869</epage><pages>7861-7869</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Driven by the desire to find efficient alternatives to lithium-ion batteries for large-scale energy storage systems, sodium-ion batteries (SIBs) have been extensively researched with the aim of realizing similar electrochemical properties to those of lithium. While Sn-based anodes for SIBs offer reasonable theoretical capacity (847 mA h g −1 for Na 15 Sn 4 ), their sluggish kinetics, low conductivity, and large volume expansion represent unresolved drawbacks. To address these issues, we propose an effective approach to alleviate the volume pulverization and enhance the capacity of SIB anodes by anchoring SnS nanoparticles densely on a porous carbon nanotube (CNT) film (SnS@CNT). As a result of the formation of inherent chemical bonds between SnS and the surface of the CNTs, the well-dispersed SnS nanoparticles anchored on the CNT network help to significantly enlarge the contact surface area between the active material and sodium ions. This free-standing film yields a high capacity of up to 762 mA h g −1 , owing to its improved conductivity and enlarged surface area, which are attributed to the increase in capacity of 146%, compared to the capacity of SnS nanoparticles in the absence of CNT (521 mA h g −1 ), at a current density of 100 mA g −1 . The SnS@CNT anode exhibits excellent cyclability at a current density of 1 A g −1 , with capacities of 666 and 615 mA h g −1 after 100 (100% retention) and 500 cycles (92% retention), respectively, in addition to excellent kinetics. The hybrid SnS@CNT film used as the SIB anode is binder-free, allowing for a greater concentration of active materials that contribute to battery performance. An effective approach to alleviate the volume expansion of alloying material and magnify the capacity of sodium-ions batteries anode by anchoring the SnS nanoparticles densely on porous carbon nanotubes film.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta13136a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3220-9004</orcidid><orcidid>https://orcid.org/0000-0001-7403-8157</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-04, Vol.8 (16), p.7861-7869
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_C9TA13136A
source Royal Society Of Chemistry Journals 2008-
subjects Alternative energy sources
Anchoring
Anodes
Batteries
Carbon nanotubes
Chemical bonds
Conductivity
Current density
Diffusion coefficient
Electrochemical analysis
Electrochemistry
Electrode materials
Energy loss
Energy storage
Ion diffusion
Kinetics
Lithium
Low conductivity
Mathematical analysis
Nanoparticles
Nanotechnology
Nanotubes
Oxidation
Rechargeable batteries
Retention
Scanning electron microscopy
Sodium
Sodium diffusion
Sodium-ion batteries
Stability
Storage batteries
Storage systems
Surface area
title Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monodispersed%20SnS%20nanoparticles%20anchored%20on%20carbon%20nanotubes%20for%20high-retention%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Luu,%20Thi%20Hoai%20Thuong&rft.date=2020-04-28&rft.volume=8&rft.issue=16&rft.spage=7861&rft.epage=7869&rft.pages=7861-7869&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta13136a&rft_dat=%3Cproquest_cross%3E2395289695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395289695&rft_id=info:pmid/&rfr_iscdi=true