Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries
Driven by the desire to find efficient alternatives to lithium-ion batteries for large-scale energy storage systems, sodium-ion batteries (SIBs) have been extensively researched with the aim of realizing similar electrochemical properties to those of lithium. While Sn-based anodes for SIBs offer rea...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-04, Vol.8 (16), p.7861-7869 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7869 |
---|---|
container_issue | 16 |
container_start_page | 7861 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Luu, Thi Hoai Thuong Duong, Dinh Loc Lee, Tae Hoon Pham, Duy Tho Sahoo, Ramkrishna Han, Gyeongtak Kim, Young-Min Lee, Young Hee |
description | Driven by the desire to find efficient alternatives to lithium-ion batteries for large-scale energy storage systems, sodium-ion batteries (SIBs) have been extensively researched with the aim of realizing similar electrochemical properties to those of lithium. While Sn-based anodes for SIBs offer reasonable theoretical capacity (847 mA h g
−1
for Na
15
Sn
4
), their sluggish kinetics, low conductivity, and large volume expansion represent unresolved drawbacks. To address these issues, we propose an effective approach to alleviate the volume pulverization and enhance the capacity of SIB anodes by anchoring SnS nanoparticles densely on a porous carbon nanotube (CNT) film (SnS@CNT). As a result of the formation of inherent chemical bonds between SnS and the surface of the CNTs, the well-dispersed SnS nanoparticles anchored on the CNT network help to significantly enlarge the contact surface area between the active material and sodium ions. This free-standing film yields a high capacity of up to 762 mA h g
−1
, owing to its improved conductivity and enlarged surface area, which are attributed to the increase in capacity of 146%, compared to the capacity of SnS nanoparticles in the absence of CNT (521 mA h g
−1
), at a current density of 100 mA g
−1
. The SnS@CNT anode exhibits excellent cyclability at a current density of 1 A g
−1
, with capacities of 666 and 615 mA h g
−1
after 100 (100% retention) and 500 cycles (92% retention), respectively, in addition to excellent kinetics. The hybrid SnS@CNT film used as the SIB anode is binder-free, allowing for a greater concentration of active materials that contribute to battery performance.
An effective approach to alleviate the volume expansion of alloying material and magnify the capacity of sodium-ions batteries anode by anchoring the SnS nanoparticles densely on porous carbon nanotubes film. |
doi_str_mv | 10.1039/c9ta13136a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9TA13136A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395289695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-fa6e4b7419e0db5ffa65ab5354a8d4d0e50018805f00c42e8165c2c7e9a026d3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWLQX78KKN2F1skm2ybEUv6Diob0v2WTWbmmTNUkP_vemVurNubwZ3o838Ai5onBPgakHo5KmjLJan5BRBQLKCVf16XGX8pyMY1xDHglQKzUi9s07b_s4YIhoi4VbFE47P-iQerPBWGhnVj5ky7vC6NBm2QNp12az86FY9R-rMmBCl_psxpy225b7tdUpYegxXpKzTm8ijn_1giyfHpezl3L-_vw6m85LwzhPZadr5O2EU4VgW9HlW-hWMMG1tNwCCgAqJYgOwPAKJa2FqcwElYaqtuyC3B5ih-A_dxhTs_a74PLHpmJKVFLVSmTq7kCZ4GMM2DVD6Lc6fDUUmn2PzUwtpz89TjN8c4BDNEfur-dmsF1mrv9j2DfkH3vz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395289695</pqid></control><display><type>article</type><title>Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Luu, Thi Hoai Thuong ; Duong, Dinh Loc ; Lee, Tae Hoon ; Pham, Duy Tho ; Sahoo, Ramkrishna ; Han, Gyeongtak ; Kim, Young-Min ; Lee, Young Hee</creator><creatorcontrib>Luu, Thi Hoai Thuong ; Duong, Dinh Loc ; Lee, Tae Hoon ; Pham, Duy Tho ; Sahoo, Ramkrishna ; Han, Gyeongtak ; Kim, Young-Min ; Lee, Young Hee</creatorcontrib><description>Driven by the desire to find efficient alternatives to lithium-ion batteries for large-scale energy storage systems, sodium-ion batteries (SIBs) have been extensively researched with the aim of realizing similar electrochemical properties to those of lithium. While Sn-based anodes for SIBs offer reasonable theoretical capacity (847 mA h g
−1
for Na
15
Sn
4
), their sluggish kinetics, low conductivity, and large volume expansion represent unresolved drawbacks. To address these issues, we propose an effective approach to alleviate the volume pulverization and enhance the capacity of SIB anodes by anchoring SnS nanoparticles densely on a porous carbon nanotube (CNT) film (SnS@CNT). As a result of the formation of inherent chemical bonds between SnS and the surface of the CNTs, the well-dispersed SnS nanoparticles anchored on the CNT network help to significantly enlarge the contact surface area between the active material and sodium ions. This free-standing film yields a high capacity of up to 762 mA h g
−1
, owing to its improved conductivity and enlarged surface area, which are attributed to the increase in capacity of 146%, compared to the capacity of SnS nanoparticles in the absence of CNT (521 mA h g
−1
), at a current density of 100 mA g
−1
. The SnS@CNT anode exhibits excellent cyclability at a current density of 1 A g
−1
, with capacities of 666 and 615 mA h g
−1
after 100 (100% retention) and 500 cycles (92% retention), respectively, in addition to excellent kinetics. The hybrid SnS@CNT film used as the SIB anode is binder-free, allowing for a greater concentration of active materials that contribute to battery performance.
An effective approach to alleviate the volume expansion of alloying material and magnify the capacity of sodium-ions batteries anode by anchoring the SnS nanoparticles densely on porous carbon nanotubes film.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta13136a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alternative energy sources ; Anchoring ; Anodes ; Batteries ; Carbon nanotubes ; Chemical bonds ; Conductivity ; Current density ; Diffusion coefficient ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Energy loss ; Energy storage ; Ion diffusion ; Kinetics ; Lithium ; Low conductivity ; Mathematical analysis ; Nanoparticles ; Nanotechnology ; Nanotubes ; Oxidation ; Rechargeable batteries ; Retention ; Scanning electron microscopy ; Sodium ; Sodium diffusion ; Sodium-ion batteries ; Stability ; Storage batteries ; Storage systems ; Surface area</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-04, Vol.8 (16), p.7861-7869</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-fa6e4b7419e0db5ffa65ab5354a8d4d0e50018805f00c42e8165c2c7e9a026d3</citedby><cites>FETCH-LOGICAL-c344t-fa6e4b7419e0db5ffa65ab5354a8d4d0e50018805f00c42e8165c2c7e9a026d3</cites><orcidid>0000-0003-3220-9004 ; 0000-0001-7403-8157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Luu, Thi Hoai Thuong</creatorcontrib><creatorcontrib>Duong, Dinh Loc</creatorcontrib><creatorcontrib>Lee, Tae Hoon</creatorcontrib><creatorcontrib>Pham, Duy Tho</creatorcontrib><creatorcontrib>Sahoo, Ramkrishna</creatorcontrib><creatorcontrib>Han, Gyeongtak</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><title>Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Driven by the desire to find efficient alternatives to lithium-ion batteries for large-scale energy storage systems, sodium-ion batteries (SIBs) have been extensively researched with the aim of realizing similar electrochemical properties to those of lithium. While Sn-based anodes for SIBs offer reasonable theoretical capacity (847 mA h g
−1
for Na
15
Sn
4
), their sluggish kinetics, low conductivity, and large volume expansion represent unresolved drawbacks. To address these issues, we propose an effective approach to alleviate the volume pulverization and enhance the capacity of SIB anodes by anchoring SnS nanoparticles densely on a porous carbon nanotube (CNT) film (SnS@CNT). As a result of the formation of inherent chemical bonds between SnS and the surface of the CNTs, the well-dispersed SnS nanoparticles anchored on the CNT network help to significantly enlarge the contact surface area between the active material and sodium ions. This free-standing film yields a high capacity of up to 762 mA h g
−1
, owing to its improved conductivity and enlarged surface area, which are attributed to the increase in capacity of 146%, compared to the capacity of SnS nanoparticles in the absence of CNT (521 mA h g
−1
), at a current density of 100 mA g
−1
. The SnS@CNT anode exhibits excellent cyclability at a current density of 1 A g
−1
, with capacities of 666 and 615 mA h g
−1
after 100 (100% retention) and 500 cycles (92% retention), respectively, in addition to excellent kinetics. The hybrid SnS@CNT film used as the SIB anode is binder-free, allowing for a greater concentration of active materials that contribute to battery performance.
An effective approach to alleviate the volume expansion of alloying material and magnify the capacity of sodium-ions batteries anode by anchoring the SnS nanoparticles densely on porous carbon nanotubes film.</description><subject>Alternative energy sources</subject><subject>Anchoring</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon nanotubes</subject><subject>Chemical bonds</subject><subject>Conductivity</subject><subject>Current density</subject><subject>Diffusion coefficient</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy loss</subject><subject>Energy storage</subject><subject>Ion diffusion</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Low conductivity</subject><subject>Mathematical analysis</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Oxidation</subject><subject>Rechargeable batteries</subject><subject>Retention</subject><subject>Scanning electron microscopy</subject><subject>Sodium</subject><subject>Sodium diffusion</subject><subject>Sodium-ion batteries</subject><subject>Stability</subject><subject>Storage batteries</subject><subject>Storage systems</subject><subject>Surface area</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWLQX78KKN2F1skm2ybEUv6Diob0v2WTWbmmTNUkP_vemVurNubwZ3o838Ai5onBPgakHo5KmjLJan5BRBQLKCVf16XGX8pyMY1xDHglQKzUi9s07b_s4YIhoi4VbFE47P-iQerPBWGhnVj5ky7vC6NBm2QNp12az86FY9R-rMmBCl_psxpy225b7tdUpYegxXpKzTm8ijn_1giyfHpezl3L-_vw6m85LwzhPZadr5O2EU4VgW9HlW-hWMMG1tNwCCgAqJYgOwPAKJa2FqcwElYaqtuyC3B5ih-A_dxhTs_a74PLHpmJKVFLVSmTq7kCZ4GMM2DVD6Lc6fDUUmn2PzUwtpz89TjN8c4BDNEfur-dmsF1mrv9j2DfkH3vz</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>Luu, Thi Hoai Thuong</creator><creator>Duong, Dinh Loc</creator><creator>Lee, Tae Hoon</creator><creator>Pham, Duy Tho</creator><creator>Sahoo, Ramkrishna</creator><creator>Han, Gyeongtak</creator><creator>Kim, Young-Min</creator><creator>Lee, Young Hee</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3220-9004</orcidid><orcidid>https://orcid.org/0000-0001-7403-8157</orcidid></search><sort><creationdate>20200428</creationdate><title>Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries</title><author>Luu, Thi Hoai Thuong ; Duong, Dinh Loc ; Lee, Tae Hoon ; Pham, Duy Tho ; Sahoo, Ramkrishna ; Han, Gyeongtak ; Kim, Young-Min ; Lee, Young Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-fa6e4b7419e0db5ffa65ab5354a8d4d0e50018805f00c42e8165c2c7e9a026d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative energy sources</topic><topic>Anchoring</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon nanotubes</topic><topic>Chemical bonds</topic><topic>Conductivity</topic><topic>Current density</topic><topic>Diffusion coefficient</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy loss</topic><topic>Energy storage</topic><topic>Ion diffusion</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Low conductivity</topic><topic>Mathematical analysis</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Oxidation</topic><topic>Rechargeable batteries</topic><topic>Retention</topic><topic>Scanning electron microscopy</topic><topic>Sodium</topic><topic>Sodium diffusion</topic><topic>Sodium-ion batteries</topic><topic>Stability</topic><topic>Storage batteries</topic><topic>Storage systems</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luu, Thi Hoai Thuong</creatorcontrib><creatorcontrib>Duong, Dinh Loc</creatorcontrib><creatorcontrib>Lee, Tae Hoon</creatorcontrib><creatorcontrib>Pham, Duy Tho</creatorcontrib><creatorcontrib>Sahoo, Ramkrishna</creatorcontrib><creatorcontrib>Han, Gyeongtak</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luu, Thi Hoai Thuong</au><au>Duong, Dinh Loc</au><au>Lee, Tae Hoon</au><au>Pham, Duy Tho</au><au>Sahoo, Ramkrishna</au><au>Han, Gyeongtak</au><au>Kim, Young-Min</au><au>Lee, Young Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-04-28</date><risdate>2020</risdate><volume>8</volume><issue>16</issue><spage>7861</spage><epage>7869</epage><pages>7861-7869</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Driven by the desire to find efficient alternatives to lithium-ion batteries for large-scale energy storage systems, sodium-ion batteries (SIBs) have been extensively researched with the aim of realizing similar electrochemical properties to those of lithium. While Sn-based anodes for SIBs offer reasonable theoretical capacity (847 mA h g
−1
for Na
15
Sn
4
), their sluggish kinetics, low conductivity, and large volume expansion represent unresolved drawbacks. To address these issues, we propose an effective approach to alleviate the volume pulverization and enhance the capacity of SIB anodes by anchoring SnS nanoparticles densely on a porous carbon nanotube (CNT) film (SnS@CNT). As a result of the formation of inherent chemical bonds between SnS and the surface of the CNTs, the well-dispersed SnS nanoparticles anchored on the CNT network help to significantly enlarge the contact surface area between the active material and sodium ions. This free-standing film yields a high capacity of up to 762 mA h g
−1
, owing to its improved conductivity and enlarged surface area, which are attributed to the increase in capacity of 146%, compared to the capacity of SnS nanoparticles in the absence of CNT (521 mA h g
−1
), at a current density of 100 mA g
−1
. The SnS@CNT anode exhibits excellent cyclability at a current density of 1 A g
−1
, with capacities of 666 and 615 mA h g
−1
after 100 (100% retention) and 500 cycles (92% retention), respectively, in addition to excellent kinetics. The hybrid SnS@CNT film used as the SIB anode is binder-free, allowing for a greater concentration of active materials that contribute to battery performance.
An effective approach to alleviate the volume expansion of alloying material and magnify the capacity of sodium-ions batteries anode by anchoring the SnS nanoparticles densely on porous carbon nanotubes film.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta13136a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3220-9004</orcidid><orcidid>https://orcid.org/0000-0001-7403-8157</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-04, Vol.8 (16), p.7861-7869 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9TA13136A |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Alternative energy sources Anchoring Anodes Batteries Carbon nanotubes Chemical bonds Conductivity Current density Diffusion coefficient Electrochemical analysis Electrochemistry Electrode materials Energy loss Energy storage Ion diffusion Kinetics Lithium Low conductivity Mathematical analysis Nanoparticles Nanotechnology Nanotubes Oxidation Rechargeable batteries Retention Scanning electron microscopy Sodium Sodium diffusion Sodium-ion batteries Stability Storage batteries Storage systems Surface area |
title | Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monodispersed%20SnS%20nanoparticles%20anchored%20on%20carbon%20nanotubes%20for%20high-retention%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Luu,%20Thi%20Hoai%20Thuong&rft.date=2020-04-28&rft.volume=8&rft.issue=16&rft.spage=7861&rft.epage=7869&rft.pages=7861-7869&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta13136a&rft_dat=%3Cproquest_cross%3E2395289695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395289695&rft_id=info:pmid/&rfr_iscdi=true |