Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries

Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries. However, the compositional complexity of biomass has for a long time compromised the predictability of the structural and electrochemical properties of carbon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (47), p.26954-26965
Hauptverfasser: Feng, Yiming, Tao, Lei, He, Yanhong, Jin, Qing, Kuai, Chunguang, Zheng, Yunwu, Li, Mengqiao, Hou, Qingping, Zheng, Zhifeng, Lin, Feng, Huang, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26965
container_issue 47
container_start_page 26954
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Feng, Yiming
Tao, Lei
He, Yanhong
Jin, Qing
Kuai, Chunguang
Zheng, Yunwu
Li, Mengqiao
Hou, Qingping
Zheng, Zhifeng
Lin, Feng
Huang, Haibo
description Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries. However, the compositional complexity of biomass has for a long time compromised the predictability of the structural and electrochemical properties of carbon. Using the chemical-enzymatic fractionation technique, we successively remove non-lignocellulosic components, hemicellulose and cellulose to create a suite of precursors for carbonization, in order to understand the roles of each biomass component in battery performance. Brewer's spent grain, an agricultural waste, is used as a representative biomass platform. The resulting hard carbon, with non-lignocellulosic components removed prior to carbonization, exhibits a dramatically reduced surface area and an increased specific capacity. Simultaneously removing non-lignocellulosic components and hemicellulose results in more sp 2 carbon, expanded (002) interlayer spacing, and a remarkably improved specific capacity by four fold. Further removing cellulose, with only lignin remaining, significantly reduces the sp 2 carbon and undermines the cycling stability of the derived carbon. Our finding reveals that the electrochemical properties of the biomass-derived hard carbons in sodium ion batteries may be positively correlated with cellulose and lignin but negatively impacted by non-lignocellulosic components and hemicellulose. Guided by this knowledge, we further fractionated two additional biomasses, i.e. grape pomace and walnut shells, for improving the carbon performance. After removing non-lignocellulosic components and hemicellulose, the resulting hard carbon delivers a reversible capacity of 296 mA h g −1 at 50 mA g −1 and retains 86.4% capacity after 200 cycles. Therefore, our results lay the foundation for unlocking the potential of biomass-derived carbon materials by precise fractionation of biomass components. Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries.
doi_str_mv 10.1039/c9ta09124f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9TA09124F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320868239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1006715d28cd9d9798e9afa37dffc592100ed43e7da579c503b92b1de3296d033</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWLQX70LEm7CaTfZrjmWxKhS81POSzQdN3d3UJCvUv96slXpzDpkh7zcv4SF0lZL7lDB4EBA4gZRm-gTNKMlJUmZQnB7nqjpHc--3JFZFSAEwQ2O9Ub0RvEvU8LXveTACa8dFMHbg04GDxePQWfGOw0bhnQ1qCIZ32GrcGttz7xOpnPlUEgvu2rgRXeIF7zzW1mFvpRl7PFm1PEyK8pfoTEddzX_7BXpbPq7r52T1-vRSL1aJYFkWkjR-skxzSSshQUIJlQKuOSul1iIHGnUlM6ZKyfMSRE5YC7RNpWIUCkkYu0C3B9-dsx-j8qHZ2tEN8cmGMkqqoqIMInV3oISz3julm50zPXf7JiXNlGxTw3rxk-wywjcH2Hlx5P6Sb3ZSR-b6P4Z9AzDEgoo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320868239</pqid></control><display><type>article</type><title>Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Feng, Yiming ; Tao, Lei ; He, Yanhong ; Jin, Qing ; Kuai, Chunguang ; Zheng, Yunwu ; Li, Mengqiao ; Hou, Qingping ; Zheng, Zhifeng ; Lin, Feng ; Huang, Haibo</creator><creatorcontrib>Feng, Yiming ; Tao, Lei ; He, Yanhong ; Jin, Qing ; Kuai, Chunguang ; Zheng, Yunwu ; Li, Mengqiao ; Hou, Qingping ; Zheng, Zhifeng ; Lin, Feng ; Huang, Haibo</creatorcontrib><description>Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries. However, the compositional complexity of biomass has for a long time compromised the predictability of the structural and electrochemical properties of carbon. Using the chemical-enzymatic fractionation technique, we successively remove non-lignocellulosic components, hemicellulose and cellulose to create a suite of precursors for carbonization, in order to understand the roles of each biomass component in battery performance. Brewer's spent grain, an agricultural waste, is used as a representative biomass platform. The resulting hard carbon, with non-lignocellulosic components removed prior to carbonization, exhibits a dramatically reduced surface area and an increased specific capacity. Simultaneously removing non-lignocellulosic components and hemicellulose results in more sp 2 carbon, expanded (002) interlayer spacing, and a remarkably improved specific capacity by four fold. Further removing cellulose, with only lignin remaining, significantly reduces the sp 2 carbon and undermines the cycling stability of the derived carbon. Our finding reveals that the electrochemical properties of the biomass-derived hard carbons in sodium ion batteries may be positively correlated with cellulose and lignin but negatively impacted by non-lignocellulosic components and hemicellulose. Guided by this knowledge, we further fractionated two additional biomasses, i.e. grape pomace and walnut shells, for improving the carbon performance. After removing non-lignocellulosic components and hemicellulose, the resulting hard carbon delivers a reversible capacity of 296 mA h g −1 at 50 mA g −1 and retains 86.4% capacity after 200 cycles. Therefore, our results lay the foundation for unlocking the potential of biomass-derived carbon materials by precise fractionation of biomass components. Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta09124f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Agricultural wastes ; Batteries ; Biomass ; Carbon ; Carbon cycle ; Carbon sources ; Carbonization ; Cellulose ; Electrochemical analysis ; Electrochemistry ; Fractionation ; Hemicellulose ; Interlayers ; Lignin ; Lignocellulose ; Organic chemistry ; Plant biomass ; Sodium ; Sodium-ion batteries ; Specific capacity ; Walnuts</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (47), p.26954-26965</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1006715d28cd9d9798e9afa37dffc592100ed43e7da579c503b92b1de3296d033</citedby><cites>FETCH-LOGICAL-c344t-1006715d28cd9d9798e9afa37dffc592100ed43e7da579c503b92b1de3296d033</cites><orcidid>0000-0002-2106-4105 ; 0000-0002-3729-3148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Feng, Yiming</creatorcontrib><creatorcontrib>Tao, Lei</creatorcontrib><creatorcontrib>He, Yanhong</creatorcontrib><creatorcontrib>Jin, Qing</creatorcontrib><creatorcontrib>Kuai, Chunguang</creatorcontrib><creatorcontrib>Zheng, Yunwu</creatorcontrib><creatorcontrib>Li, Mengqiao</creatorcontrib><creatorcontrib>Hou, Qingping</creatorcontrib><creatorcontrib>Zheng, Zhifeng</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Huang, Haibo</creatorcontrib><title>Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries. However, the compositional complexity of biomass has for a long time compromised the predictability of the structural and electrochemical properties of carbon. Using the chemical-enzymatic fractionation technique, we successively remove non-lignocellulosic components, hemicellulose and cellulose to create a suite of precursors for carbonization, in order to understand the roles of each biomass component in battery performance. Brewer's spent grain, an agricultural waste, is used as a representative biomass platform. The resulting hard carbon, with non-lignocellulosic components removed prior to carbonization, exhibits a dramatically reduced surface area and an increased specific capacity. Simultaneously removing non-lignocellulosic components and hemicellulose results in more sp 2 carbon, expanded (002) interlayer spacing, and a remarkably improved specific capacity by four fold. Further removing cellulose, with only lignin remaining, significantly reduces the sp 2 carbon and undermines the cycling stability of the derived carbon. Our finding reveals that the electrochemical properties of the biomass-derived hard carbons in sodium ion batteries may be positively correlated with cellulose and lignin but negatively impacted by non-lignocellulosic components and hemicellulose. Guided by this knowledge, we further fractionated two additional biomasses, i.e. grape pomace and walnut shells, for improving the carbon performance. After removing non-lignocellulosic components and hemicellulose, the resulting hard carbon delivers a reversible capacity of 296 mA h g −1 at 50 mA g −1 and retains 86.4% capacity after 200 cycles. Therefore, our results lay the foundation for unlocking the potential of biomass-derived carbon materials by precise fractionation of biomass components. Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries.</description><subject>Agricultural wastes</subject><subject>Batteries</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon sources</subject><subject>Carbonization</subject><subject>Cellulose</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Fractionation</subject><subject>Hemicellulose</subject><subject>Interlayers</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Organic chemistry</subject><subject>Plant biomass</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Specific capacity</subject><subject>Walnuts</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWLQX70LEm7CaTfZrjmWxKhS81POSzQdN3d3UJCvUv96slXpzDpkh7zcv4SF0lZL7lDB4EBA4gZRm-gTNKMlJUmZQnB7nqjpHc--3JFZFSAEwQ2O9Ub0RvEvU8LXveTACa8dFMHbg04GDxePQWfGOw0bhnQ1qCIZ32GrcGttz7xOpnPlUEgvu2rgRXeIF7zzW1mFvpRl7PFm1PEyK8pfoTEddzX_7BXpbPq7r52T1-vRSL1aJYFkWkjR-skxzSSshQUIJlQKuOSul1iIHGnUlM6ZKyfMSRE5YC7RNpWIUCkkYu0C3B9-dsx-j8qHZ2tEN8cmGMkqqoqIMInV3oISz3julm50zPXf7JiXNlGxTw3rxk-wywjcH2Hlx5P6Sb3ZSR-b6P4Z9AzDEgoo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Feng, Yiming</creator><creator>Tao, Lei</creator><creator>He, Yanhong</creator><creator>Jin, Qing</creator><creator>Kuai, Chunguang</creator><creator>Zheng, Yunwu</creator><creator>Li, Mengqiao</creator><creator>Hou, Qingping</creator><creator>Zheng, Zhifeng</creator><creator>Lin, Feng</creator><creator>Huang, Haibo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2106-4105</orcidid><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid></search><sort><creationdate>2019</creationdate><title>Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries</title><author>Feng, Yiming ; Tao, Lei ; He, Yanhong ; Jin, Qing ; Kuai, Chunguang ; Zheng, Yunwu ; Li, Mengqiao ; Hou, Qingping ; Zheng, Zhifeng ; Lin, Feng ; Huang, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1006715d28cd9d9798e9afa37dffc592100ed43e7da579c503b92b1de3296d033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agricultural wastes</topic><topic>Batteries</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon sources</topic><topic>Carbonization</topic><topic>Cellulose</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Fractionation</topic><topic>Hemicellulose</topic><topic>Interlayers</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Organic chemistry</topic><topic>Plant biomass</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Specific capacity</topic><topic>Walnuts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yiming</creatorcontrib><creatorcontrib>Tao, Lei</creatorcontrib><creatorcontrib>He, Yanhong</creatorcontrib><creatorcontrib>Jin, Qing</creatorcontrib><creatorcontrib>Kuai, Chunguang</creatorcontrib><creatorcontrib>Zheng, Yunwu</creatorcontrib><creatorcontrib>Li, Mengqiao</creatorcontrib><creatorcontrib>Hou, Qingping</creatorcontrib><creatorcontrib>Zheng, Zhifeng</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Huang, Haibo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yiming</au><au>Tao, Lei</au><au>He, Yanhong</au><au>Jin, Qing</au><au>Kuai, Chunguang</au><au>Zheng, Yunwu</au><au>Li, Mengqiao</au><au>Hou, Qingping</au><au>Zheng, Zhifeng</au><au>Lin, Feng</au><au>Huang, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>47</issue><spage>26954</spage><epage>26965</epage><pages>26954-26965</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries. However, the compositional complexity of biomass has for a long time compromised the predictability of the structural and electrochemical properties of carbon. Using the chemical-enzymatic fractionation technique, we successively remove non-lignocellulosic components, hemicellulose and cellulose to create a suite of precursors for carbonization, in order to understand the roles of each biomass component in battery performance. Brewer's spent grain, an agricultural waste, is used as a representative biomass platform. The resulting hard carbon, with non-lignocellulosic components removed prior to carbonization, exhibits a dramatically reduced surface area and an increased specific capacity. Simultaneously removing non-lignocellulosic components and hemicellulose results in more sp 2 carbon, expanded (002) interlayer spacing, and a remarkably improved specific capacity by four fold. Further removing cellulose, with only lignin remaining, significantly reduces the sp 2 carbon and undermines the cycling stability of the derived carbon. Our finding reveals that the electrochemical properties of the biomass-derived hard carbons in sodium ion batteries may be positively correlated with cellulose and lignin but negatively impacted by non-lignocellulosic components and hemicellulose. Guided by this knowledge, we further fractionated two additional biomasses, i.e. grape pomace and walnut shells, for improving the carbon performance. After removing non-lignocellulosic components and hemicellulose, the resulting hard carbon delivers a reversible capacity of 296 mA h g −1 at 50 mA g −1 and retains 86.4% capacity after 200 cycles. Therefore, our results lay the foundation for unlocking the potential of biomass-derived carbon materials by precise fractionation of biomass components. Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta09124f</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2106-4105</orcidid><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (47), p.26954-26965
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_C9TA09124F
source Royal Society Of Chemistry Journals
subjects Agricultural wastes
Batteries
Biomass
Carbon
Carbon cycle
Carbon sources
Carbonization
Cellulose
Electrochemical analysis
Electrochemistry
Fractionation
Hemicellulose
Interlayers
Lignin
Lignocellulose
Organic chemistry
Plant biomass
Sodium
Sodium-ion batteries
Specific capacity
Walnuts
title Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical-enzymatic%20fractionation%20to%20unlock%20the%20potential%20of%20biomass-derived%20carbon%20materials%20for%20sodium%20ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Feng,%20Yiming&rft.date=2019&rft.volume=7&rft.issue=47&rft.spage=26954&rft.epage=26965&rft.pages=26954-26965&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta09124f&rft_dat=%3Cproquest_cross%3E2320868239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320868239&rft_id=info:pmid/&rfr_iscdi=true