Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries
Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries. However, the compositional complexity of biomass has for a long time compromised the predictability of the structural and electrochemical properties of carbon...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (47), p.26954-26965 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26965 |
---|---|
container_issue | 47 |
container_start_page | 26954 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Feng, Yiming Tao, Lei He, Yanhong Jin, Qing Kuai, Chunguang Zheng, Yunwu Li, Mengqiao Hou, Qingping Zheng, Zhifeng Lin, Feng Huang, Haibo |
description | Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries. However, the compositional complexity of biomass has for a long time compromised the predictability of the structural and electrochemical properties of carbon. Using the chemical-enzymatic fractionation technique, we successively remove non-lignocellulosic components, hemicellulose and cellulose to create a suite of precursors for carbonization, in order to understand the roles of each biomass component in battery performance. Brewer's spent grain, an agricultural waste, is used as a representative biomass platform. The resulting hard carbon, with non-lignocellulosic components removed prior to carbonization, exhibits a dramatically reduced surface area and an increased specific capacity. Simultaneously removing non-lignocellulosic components and hemicellulose results in more sp
2
carbon, expanded (002) interlayer spacing, and a remarkably improved specific capacity by four fold. Further removing cellulose, with only lignin remaining, significantly reduces the sp
2
carbon and undermines the cycling stability of the derived carbon. Our finding reveals that the electrochemical properties of the biomass-derived hard carbons in sodium ion batteries may be positively correlated with cellulose and lignin but negatively impacted by non-lignocellulosic components and hemicellulose. Guided by this knowledge, we further fractionated two additional biomasses,
i.e.
grape pomace and walnut shells, for improving the carbon performance. After removing non-lignocellulosic components and hemicellulose, the resulting hard carbon delivers a reversible capacity of 296 mA h g
−1
at 50 mA g
−1
and retains 86.4% capacity after 200 cycles. Therefore, our results lay the foundation for unlocking the potential of biomass-derived carbon materials by precise fractionation of biomass components.
Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries. |
doi_str_mv | 10.1039/c9ta09124f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9TA09124F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320868239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1006715d28cd9d9798e9afa37dffc592100ed43e7da579c503b92b1de3296d033</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWLQX70LEm7CaTfZrjmWxKhS81POSzQdN3d3UJCvUv96slXpzDpkh7zcv4SF0lZL7lDB4EBA4gZRm-gTNKMlJUmZQnB7nqjpHc--3JFZFSAEwQ2O9Ub0RvEvU8LXveTACa8dFMHbg04GDxePQWfGOw0bhnQ1qCIZ32GrcGttz7xOpnPlUEgvu2rgRXeIF7zzW1mFvpRl7PFm1PEyK8pfoTEddzX_7BXpbPq7r52T1-vRSL1aJYFkWkjR-skxzSSshQUIJlQKuOSul1iIHGnUlM6ZKyfMSRE5YC7RNpWIUCkkYu0C3B9-dsx-j8qHZ2tEN8cmGMkqqoqIMInV3oISz3julm50zPXf7JiXNlGxTw3rxk-wywjcH2Hlx5P6Sb3ZSR-b6P4Z9AzDEgoo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320868239</pqid></control><display><type>article</type><title>Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Feng, Yiming ; Tao, Lei ; He, Yanhong ; Jin, Qing ; Kuai, Chunguang ; Zheng, Yunwu ; Li, Mengqiao ; Hou, Qingping ; Zheng, Zhifeng ; Lin, Feng ; Huang, Haibo</creator><creatorcontrib>Feng, Yiming ; Tao, Lei ; He, Yanhong ; Jin, Qing ; Kuai, Chunguang ; Zheng, Yunwu ; Li, Mengqiao ; Hou, Qingping ; Zheng, Zhifeng ; Lin, Feng ; Huang, Haibo</creatorcontrib><description>Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries. However, the compositional complexity of biomass has for a long time compromised the predictability of the structural and electrochemical properties of carbon. Using the chemical-enzymatic fractionation technique, we successively remove non-lignocellulosic components, hemicellulose and cellulose to create a suite of precursors for carbonization, in order to understand the roles of each biomass component in battery performance. Brewer's spent grain, an agricultural waste, is used as a representative biomass platform. The resulting hard carbon, with non-lignocellulosic components removed prior to carbonization, exhibits a dramatically reduced surface area and an increased specific capacity. Simultaneously removing non-lignocellulosic components and hemicellulose results in more sp
2
carbon, expanded (002) interlayer spacing, and a remarkably improved specific capacity by four fold. Further removing cellulose, with only lignin remaining, significantly reduces the sp
2
carbon and undermines the cycling stability of the derived carbon. Our finding reveals that the electrochemical properties of the biomass-derived hard carbons in sodium ion batteries may be positively correlated with cellulose and lignin but negatively impacted by non-lignocellulosic components and hemicellulose. Guided by this knowledge, we further fractionated two additional biomasses,
i.e.
grape pomace and walnut shells, for improving the carbon performance. After removing non-lignocellulosic components and hemicellulose, the resulting hard carbon delivers a reversible capacity of 296 mA h g
−1
at 50 mA g
−1
and retains 86.4% capacity after 200 cycles. Therefore, our results lay the foundation for unlocking the potential of biomass-derived carbon materials by precise fractionation of biomass components.
Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta09124f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Agricultural wastes ; Batteries ; Biomass ; Carbon ; Carbon cycle ; Carbon sources ; Carbonization ; Cellulose ; Electrochemical analysis ; Electrochemistry ; Fractionation ; Hemicellulose ; Interlayers ; Lignin ; Lignocellulose ; Organic chemistry ; Plant biomass ; Sodium ; Sodium-ion batteries ; Specific capacity ; Walnuts</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (47), p.26954-26965</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1006715d28cd9d9798e9afa37dffc592100ed43e7da579c503b92b1de3296d033</citedby><cites>FETCH-LOGICAL-c344t-1006715d28cd9d9798e9afa37dffc592100ed43e7da579c503b92b1de3296d033</cites><orcidid>0000-0002-2106-4105 ; 0000-0002-3729-3148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Feng, Yiming</creatorcontrib><creatorcontrib>Tao, Lei</creatorcontrib><creatorcontrib>He, Yanhong</creatorcontrib><creatorcontrib>Jin, Qing</creatorcontrib><creatorcontrib>Kuai, Chunguang</creatorcontrib><creatorcontrib>Zheng, Yunwu</creatorcontrib><creatorcontrib>Li, Mengqiao</creatorcontrib><creatorcontrib>Hou, Qingping</creatorcontrib><creatorcontrib>Zheng, Zhifeng</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Huang, Haibo</creatorcontrib><title>Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries. However, the compositional complexity of biomass has for a long time compromised the predictability of the structural and electrochemical properties of carbon. Using the chemical-enzymatic fractionation technique, we successively remove non-lignocellulosic components, hemicellulose and cellulose to create a suite of precursors for carbonization, in order to understand the roles of each biomass component in battery performance. Brewer's spent grain, an agricultural waste, is used as a representative biomass platform. The resulting hard carbon, with non-lignocellulosic components removed prior to carbonization, exhibits a dramatically reduced surface area and an increased specific capacity. Simultaneously removing non-lignocellulosic components and hemicellulose results in more sp
2
carbon, expanded (002) interlayer spacing, and a remarkably improved specific capacity by four fold. Further removing cellulose, with only lignin remaining, significantly reduces the sp
2
carbon and undermines the cycling stability of the derived carbon. Our finding reveals that the electrochemical properties of the biomass-derived hard carbons in sodium ion batteries may be positively correlated with cellulose and lignin but negatively impacted by non-lignocellulosic components and hemicellulose. Guided by this knowledge, we further fractionated two additional biomasses,
i.e.
grape pomace and walnut shells, for improving the carbon performance. After removing non-lignocellulosic components and hemicellulose, the resulting hard carbon delivers a reversible capacity of 296 mA h g
−1
at 50 mA g
−1
and retains 86.4% capacity after 200 cycles. Therefore, our results lay the foundation for unlocking the potential of biomass-derived carbon materials by precise fractionation of biomass components.
Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries.</description><subject>Agricultural wastes</subject><subject>Batteries</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon sources</subject><subject>Carbonization</subject><subject>Cellulose</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Fractionation</subject><subject>Hemicellulose</subject><subject>Interlayers</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Organic chemistry</subject><subject>Plant biomass</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Specific capacity</subject><subject>Walnuts</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWLQX70LEm7CaTfZrjmWxKhS81POSzQdN3d3UJCvUv96slXpzDpkh7zcv4SF0lZL7lDB4EBA4gZRm-gTNKMlJUmZQnB7nqjpHc--3JFZFSAEwQ2O9Ub0RvEvU8LXveTACa8dFMHbg04GDxePQWfGOw0bhnQ1qCIZ32GrcGttz7xOpnPlUEgvu2rgRXeIF7zzW1mFvpRl7PFm1PEyK8pfoTEddzX_7BXpbPq7r52T1-vRSL1aJYFkWkjR-skxzSSshQUIJlQKuOSul1iIHGnUlM6ZKyfMSRE5YC7RNpWIUCkkYu0C3B9-dsx-j8qHZ2tEN8cmGMkqqoqIMInV3oISz3julm50zPXf7JiXNlGxTw3rxk-wywjcH2Hlx5P6Sb3ZSR-b6P4Z9AzDEgoo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Feng, Yiming</creator><creator>Tao, Lei</creator><creator>He, Yanhong</creator><creator>Jin, Qing</creator><creator>Kuai, Chunguang</creator><creator>Zheng, Yunwu</creator><creator>Li, Mengqiao</creator><creator>Hou, Qingping</creator><creator>Zheng, Zhifeng</creator><creator>Lin, Feng</creator><creator>Huang, Haibo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2106-4105</orcidid><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid></search><sort><creationdate>2019</creationdate><title>Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries</title><author>Feng, Yiming ; Tao, Lei ; He, Yanhong ; Jin, Qing ; Kuai, Chunguang ; Zheng, Yunwu ; Li, Mengqiao ; Hou, Qingping ; Zheng, Zhifeng ; Lin, Feng ; Huang, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1006715d28cd9d9798e9afa37dffc592100ed43e7da579c503b92b1de3296d033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agricultural wastes</topic><topic>Batteries</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon sources</topic><topic>Carbonization</topic><topic>Cellulose</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Fractionation</topic><topic>Hemicellulose</topic><topic>Interlayers</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Organic chemistry</topic><topic>Plant biomass</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Specific capacity</topic><topic>Walnuts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yiming</creatorcontrib><creatorcontrib>Tao, Lei</creatorcontrib><creatorcontrib>He, Yanhong</creatorcontrib><creatorcontrib>Jin, Qing</creatorcontrib><creatorcontrib>Kuai, Chunguang</creatorcontrib><creatorcontrib>Zheng, Yunwu</creatorcontrib><creatorcontrib>Li, Mengqiao</creatorcontrib><creatorcontrib>Hou, Qingping</creatorcontrib><creatorcontrib>Zheng, Zhifeng</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Huang, Haibo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yiming</au><au>Tao, Lei</au><au>He, Yanhong</au><au>Jin, Qing</au><au>Kuai, Chunguang</au><au>Zheng, Yunwu</au><au>Li, Mengqiao</au><au>Hou, Qingping</au><au>Zheng, Zhifeng</au><au>Lin, Feng</au><au>Huang, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>47</issue><spage>26954</spage><epage>26965</epage><pages>26954-26965</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries. However, the compositional complexity of biomass has for a long time compromised the predictability of the structural and electrochemical properties of carbon. Using the chemical-enzymatic fractionation technique, we successively remove non-lignocellulosic components, hemicellulose and cellulose to create a suite of precursors for carbonization, in order to understand the roles of each biomass component in battery performance. Brewer's spent grain, an agricultural waste, is used as a representative biomass platform. The resulting hard carbon, with non-lignocellulosic components removed prior to carbonization, exhibits a dramatically reduced surface area and an increased specific capacity. Simultaneously removing non-lignocellulosic components and hemicellulose results in more sp
2
carbon, expanded (002) interlayer spacing, and a remarkably improved specific capacity by four fold. Further removing cellulose, with only lignin remaining, significantly reduces the sp
2
carbon and undermines the cycling stability of the derived carbon. Our finding reveals that the electrochemical properties of the biomass-derived hard carbons in sodium ion batteries may be positively correlated with cellulose and lignin but negatively impacted by non-lignocellulosic components and hemicellulose. Guided by this knowledge, we further fractionated two additional biomasses,
i.e.
grape pomace and walnut shells, for improving the carbon performance. After removing non-lignocellulosic components and hemicellulose, the resulting hard carbon delivers a reversible capacity of 296 mA h g
−1
at 50 mA g
−1
and retains 86.4% capacity after 200 cycles. Therefore, our results lay the foundation for unlocking the potential of biomass-derived carbon materials by precise fractionation of biomass components.
Plant biomass, the most abundant and sustainable carbon source, offers a rich chemical space to design hard carbons for sodium ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta09124f</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2106-4105</orcidid><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (47), p.26954-26965 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9TA09124F |
source | Royal Society Of Chemistry Journals |
subjects | Agricultural wastes Batteries Biomass Carbon Carbon cycle Carbon sources Carbonization Cellulose Electrochemical analysis Electrochemistry Fractionation Hemicellulose Interlayers Lignin Lignocellulose Organic chemistry Plant biomass Sodium Sodium-ion batteries Specific capacity Walnuts |
title | Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical-enzymatic%20fractionation%20to%20unlock%20the%20potential%20of%20biomass-derived%20carbon%20materials%20for%20sodium%20ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Feng,%20Yiming&rft.date=2019&rft.volume=7&rft.issue=47&rft.spage=26954&rft.epage=26965&rft.pages=26954-26965&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta09124f&rft_dat=%3Cproquest_cross%3E2320868239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320868239&rft_id=info:pmid/&rfr_iscdi=true |