Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides
We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and wi...
Gespeichert in:
Veröffentlicht in: | Soft matter 2019-07, Vol.15 (28), p.5596-5613 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5613 |
---|---|
container_issue | 28 |
container_start_page | 5596 |
container_title | Soft matter |
container_volume | 15 |
creator | Škrbi, Tatjana Hoang, Trinh Xuan Maritan, Amos Banavar, Jayanth R Giacometti, Achille |
description | We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and with a pairwise attractive square well potential accounting for the hydrophobic effect and promoting compaction. We then discuss the consequences of the successive breaking of spurious symmetries. First, we allow the partial interpenetration of consecutive beads. In addition to the standard high temperature coil phase and the low temperature collapsed phase, this results in a new class of marginally compact ground states comprising conformations reminiscent of α-helices and β-sheets, the building blocks of the native states of globular proteins. We then discuss the effect of a further symmetry breaking of the cylindrical symmetry on attaching a side-sphere to the backbone beads along the negative normal of the chain, to mimic the presence of side chains in real proteins. This leads to the emergence of a novel phase within the previously obtained marginally compact phase, with the appearance of more complex secondary structure assemblies. The potential importance of this new phase in the
de novo
design of self-assembled peptides is highlighted.
We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. |
doi_str_mv | 10.1039/c9sm00851a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9SM00851A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259395281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-1ee6f1af85fdcb67b1ff9ac64db75d87252d9e6385f3a4d35486244f2400a4a3</originalsourceid><addsrcrecordid>eNp90U1P3DAQBmCrApUFeum9yBUXhJTWjh0n4YZWfEmLeoBDb5Fjj7tZ2ZvgyR7y7-tl6VbiwMkjzzMj6zUhXzn7wZmof5oaA2NVwfUnMuOllJmqZHWwr8XvI3KMuGJMVJKrz-RI8LyohVQz8mfRG-0pTiHAGCdqYYQYujUgHZdAh6XGVPaO-nSnIzVL3a3ximqKXRg80NBb8NT18dUjeJdpRAitn7ZjAwxjZwFPyaHTHuHL23lCnm9vnuf32eLX3cP8epEZydiYcQDluHZV4axpVdly52ptlLRtWdiqzIvc1qBE6gstrShkpXIpXZ6mtdTihFzs1g6xf9kAjk3o0ID3eg39Bps8L1gaKBVP9PwdXfWbuE6P26pa1EVebdXlTpnYI0ZwzRC7oOPUcNZs02_m9dPja_rXCZ-9rdy0Aeye_os7ge87ENHsu_-_rxmsS-bbR0b8BdVclSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259395281</pqid></control><display><type>article</type><title>Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Škrbi, Tatjana ; Hoang, Trinh Xuan ; Maritan, Amos ; Banavar, Jayanth R ; Giacometti, Achille</creator><creatorcontrib>Škrbi, Tatjana ; Hoang, Trinh Xuan ; Maritan, Amos ; Banavar, Jayanth R ; Giacometti, Achille</creatorcontrib><description>We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and with a pairwise attractive square well potential accounting for the hydrophobic effect and promoting compaction. We then discuss the consequences of the successive breaking of spurious symmetries. First, we allow the partial interpenetration of consecutive beads. In addition to the standard high temperature coil phase and the low temperature collapsed phase, this results in a new class of marginally compact ground states comprising conformations reminiscent of α-helices and β-sheets, the building blocks of the native states of globular proteins. We then discuss the effect of a further symmetry breaking of the cylindrical symmetry on attaching a side-sphere to the backbone beads along the negative normal of the chain, to mimic the presence of side chains in real proteins. This leads to the emergence of a novel phase within the previously obtained marginally compact phase, with the appearance of more complex secondary structure assemblies. The potential importance of this new phase in the
de novo
design of self-assembled peptides is highlighted.
We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm00851a</identifier><identifier>PMID: 31259346</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Beads ; Biopolymers ; Broken symmetry ; Coils ; Emergence ; Helices ; High temperature ; Hydrophobicity ; Low temperature ; Models, Molecular ; Molecular chains ; Peptides ; Peptides - chemistry ; Protein Folding ; Protein structure ; Proteins ; Secondary structure ; Self-assembly ; Symmetry ; Temperature</subject><ispartof>Soft matter, 2019-07, Vol.15 (28), p.5596-5613</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-1ee6f1af85fdcb67b1ff9ac64db75d87252d9e6385f3a4d35486244f2400a4a3</citedby><cites>FETCH-LOGICAL-c400t-1ee6f1af85fdcb67b1ff9ac64db75d87252d9e6385f3a4d35486244f2400a4a3</cites><orcidid>0000-0002-1245-9842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31259346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Škrbi, Tatjana</creatorcontrib><creatorcontrib>Hoang, Trinh Xuan</creatorcontrib><creatorcontrib>Maritan, Amos</creatorcontrib><creatorcontrib>Banavar, Jayanth R</creatorcontrib><creatorcontrib>Giacometti, Achille</creatorcontrib><title>Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and with a pairwise attractive square well potential accounting for the hydrophobic effect and promoting compaction. We then discuss the consequences of the successive breaking of spurious symmetries. First, we allow the partial interpenetration of consecutive beads. In addition to the standard high temperature coil phase and the low temperature collapsed phase, this results in a new class of marginally compact ground states comprising conformations reminiscent of α-helices and β-sheets, the building blocks of the native states of globular proteins. We then discuss the effect of a further symmetry breaking of the cylindrical symmetry on attaching a side-sphere to the backbone beads along the negative normal of the chain, to mimic the presence of side chains in real proteins. This leads to the emergence of a novel phase within the previously obtained marginally compact phase, with the appearance of more complex secondary structure assemblies. The potential importance of this new phase in the
de novo
design of self-assembled peptides is highlighted.
We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers.</description><subject>Beads</subject><subject>Biopolymers</subject><subject>Broken symmetry</subject><subject>Coils</subject><subject>Emergence</subject><subject>Helices</subject><subject>High temperature</subject><subject>Hydrophobicity</subject><subject>Low temperature</subject><subject>Models, Molecular</subject><subject>Molecular chains</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Protein Folding</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Secondary structure</subject><subject>Self-assembly</subject><subject>Symmetry</subject><subject>Temperature</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U1P3DAQBmCrApUFeum9yBUXhJTWjh0n4YZWfEmLeoBDb5Fjj7tZ2ZvgyR7y7-tl6VbiwMkjzzMj6zUhXzn7wZmof5oaA2NVwfUnMuOllJmqZHWwr8XvI3KMuGJMVJKrz-RI8LyohVQz8mfRG-0pTiHAGCdqYYQYujUgHZdAh6XGVPaO-nSnIzVL3a3ximqKXRg80NBb8NT18dUjeJdpRAitn7ZjAwxjZwFPyaHTHuHL23lCnm9vnuf32eLX3cP8epEZydiYcQDluHZV4axpVdly52ptlLRtWdiqzIvc1qBE6gstrShkpXIpXZ6mtdTihFzs1g6xf9kAjk3o0ID3eg39Bps8L1gaKBVP9PwdXfWbuE6P26pa1EVebdXlTpnYI0ZwzRC7oOPUcNZs02_m9dPja_rXCZ-9rdy0Aeye_os7ge87ENHsu_-_rxmsS-bbR0b8BdVclSM</recordid><startdate>20190717</startdate><enddate>20190717</enddate><creator>Škrbi, Tatjana</creator><creator>Hoang, Trinh Xuan</creator><creator>Maritan, Amos</creator><creator>Banavar, Jayanth R</creator><creator>Giacometti, Achille</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1245-9842</orcidid></search><sort><creationdate>20190717</creationdate><title>Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides</title><author>Škrbi, Tatjana ; Hoang, Trinh Xuan ; Maritan, Amos ; Banavar, Jayanth R ; Giacometti, Achille</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-1ee6f1af85fdcb67b1ff9ac64db75d87252d9e6385f3a4d35486244f2400a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beads</topic><topic>Biopolymers</topic><topic>Broken symmetry</topic><topic>Coils</topic><topic>Emergence</topic><topic>Helices</topic><topic>High temperature</topic><topic>Hydrophobicity</topic><topic>Low temperature</topic><topic>Models, Molecular</topic><topic>Molecular chains</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Protein Folding</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Secondary structure</topic><topic>Self-assembly</topic><topic>Symmetry</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Škrbi, Tatjana</creatorcontrib><creatorcontrib>Hoang, Trinh Xuan</creatorcontrib><creatorcontrib>Maritan, Amos</creatorcontrib><creatorcontrib>Banavar, Jayanth R</creatorcontrib><creatorcontrib>Giacometti, Achille</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Škrbi, Tatjana</au><au>Hoang, Trinh Xuan</au><au>Maritan, Amos</au><au>Banavar, Jayanth R</au><au>Giacometti, Achille</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2019-07-17</date><risdate>2019</risdate><volume>15</volume><issue>28</issue><spage>5596</spage><epage>5613</epage><pages>5596-5613</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and with a pairwise attractive square well potential accounting for the hydrophobic effect and promoting compaction. We then discuss the consequences of the successive breaking of spurious symmetries. First, we allow the partial interpenetration of consecutive beads. In addition to the standard high temperature coil phase and the low temperature collapsed phase, this results in a new class of marginally compact ground states comprising conformations reminiscent of α-helices and β-sheets, the building blocks of the native states of globular proteins. We then discuss the effect of a further symmetry breaking of the cylindrical symmetry on attaching a side-sphere to the backbone beads along the negative normal of the chain, to mimic the presence of side chains in real proteins. This leads to the emergence of a novel phase within the previously obtained marginally compact phase, with the appearance of more complex secondary structure assemblies. The potential importance of this new phase in the
de novo
design of self-assembled peptides is highlighted.
We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31259346</pmid><doi>10.1039/c9sm00851a</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1245-9842</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2019-07, Vol.15 (28), p.5596-5613 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9SM00851A |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Beads Biopolymers Broken symmetry Coils Emergence Helices High temperature Hydrophobicity Low temperature Models, Molecular Molecular chains Peptides Peptides - chemistry Protein Folding Protein structure Proteins Secondary structure Self-assembly Symmetry Temperature |
title | Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20symmetry%20determines%20the%20phases%20of%20linear%20chains:%20a%20simple%20model%20for%20the%20self-assembly%20of%20peptides&rft.jtitle=Soft%20matter&rft.au=%C5%A0krbi,%20Tatjana&rft.date=2019-07-17&rft.volume=15&rft.issue=28&rft.spage=5596&rft.epage=5613&rft.pages=5596-5613&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm00851a&rft_dat=%3Cproquest_cross%3E2259395281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259395281&rft_id=info:pmid/31259346&rfr_iscdi=true |