Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides

We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2019-07, Vol.15 (28), p.5596-5613
Hauptverfasser: Škrbi, Tatjana, Hoang, Trinh Xuan, Maritan, Amos, Banavar, Jayanth R, Giacometti, Achille
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5613
container_issue 28
container_start_page 5596
container_title Soft matter
container_volume 15
creator Škrbi, Tatjana
Hoang, Trinh Xuan
Maritan, Amos
Banavar, Jayanth R
Giacometti, Achille
description We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and with a pairwise attractive square well potential accounting for the hydrophobic effect and promoting compaction. We then discuss the consequences of the successive breaking of spurious symmetries. First, we allow the partial interpenetration of consecutive beads. In addition to the standard high temperature coil phase and the low temperature collapsed phase, this results in a new class of marginally compact ground states comprising conformations reminiscent of α-helices and β-sheets, the building blocks of the native states of globular proteins. We then discuss the effect of a further symmetry breaking of the cylindrical symmetry on attaching a side-sphere to the backbone beads along the negative normal of the chain, to mimic the presence of side chains in real proteins. This leads to the emergence of a novel phase within the previously obtained marginally compact phase, with the appearance of more complex secondary structure assemblies. The potential importance of this new phase in the de novo design of self-assembled peptides is highlighted. We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers.
doi_str_mv 10.1039/c9sm00851a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9SM00851A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259395281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-1ee6f1af85fdcb67b1ff9ac64db75d87252d9e6385f3a4d35486244f2400a4a3</originalsourceid><addsrcrecordid>eNp90U1P3DAQBmCrApUFeum9yBUXhJTWjh0n4YZWfEmLeoBDb5Fjj7tZ2ZvgyR7y7-tl6VbiwMkjzzMj6zUhXzn7wZmof5oaA2NVwfUnMuOllJmqZHWwr8XvI3KMuGJMVJKrz-RI8LyohVQz8mfRG-0pTiHAGCdqYYQYujUgHZdAh6XGVPaO-nSnIzVL3a3ximqKXRg80NBb8NT18dUjeJdpRAitn7ZjAwxjZwFPyaHTHuHL23lCnm9vnuf32eLX3cP8epEZydiYcQDluHZV4axpVdly52ptlLRtWdiqzIvc1qBE6gstrShkpXIpXZ6mtdTihFzs1g6xf9kAjk3o0ID3eg39Bps8L1gaKBVP9PwdXfWbuE6P26pa1EVebdXlTpnYI0ZwzRC7oOPUcNZs02_m9dPja_rXCZ-9rdy0Aeye_os7ge87ENHsu_-_rxmsS-bbR0b8BdVclSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259395281</pqid></control><display><type>article</type><title>Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Škrbi, Tatjana ; Hoang, Trinh Xuan ; Maritan, Amos ; Banavar, Jayanth R ; Giacometti, Achille</creator><creatorcontrib>Škrbi, Tatjana ; Hoang, Trinh Xuan ; Maritan, Amos ; Banavar, Jayanth R ; Giacometti, Achille</creatorcontrib><description>We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and with a pairwise attractive square well potential accounting for the hydrophobic effect and promoting compaction. We then discuss the consequences of the successive breaking of spurious symmetries. First, we allow the partial interpenetration of consecutive beads. In addition to the standard high temperature coil phase and the low temperature collapsed phase, this results in a new class of marginally compact ground states comprising conformations reminiscent of α-helices and β-sheets, the building blocks of the native states of globular proteins. We then discuss the effect of a further symmetry breaking of the cylindrical symmetry on attaching a side-sphere to the backbone beads along the negative normal of the chain, to mimic the presence of side chains in real proteins. This leads to the emergence of a novel phase within the previously obtained marginally compact phase, with the appearance of more complex secondary structure assemblies. The potential importance of this new phase in the de novo design of self-assembled peptides is highlighted. We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm00851a</identifier><identifier>PMID: 31259346</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Beads ; Biopolymers ; Broken symmetry ; Coils ; Emergence ; Helices ; High temperature ; Hydrophobicity ; Low temperature ; Models, Molecular ; Molecular chains ; Peptides ; Peptides - chemistry ; Protein Folding ; Protein structure ; Proteins ; Secondary structure ; Self-assembly ; Symmetry ; Temperature</subject><ispartof>Soft matter, 2019-07, Vol.15 (28), p.5596-5613</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-1ee6f1af85fdcb67b1ff9ac64db75d87252d9e6385f3a4d35486244f2400a4a3</citedby><cites>FETCH-LOGICAL-c400t-1ee6f1af85fdcb67b1ff9ac64db75d87252d9e6385f3a4d35486244f2400a4a3</cites><orcidid>0000-0002-1245-9842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31259346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Škrbi, Tatjana</creatorcontrib><creatorcontrib>Hoang, Trinh Xuan</creatorcontrib><creatorcontrib>Maritan, Amos</creatorcontrib><creatorcontrib>Banavar, Jayanth R</creatorcontrib><creatorcontrib>Giacometti, Achille</creatorcontrib><title>Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and with a pairwise attractive square well potential accounting for the hydrophobic effect and promoting compaction. We then discuss the consequences of the successive breaking of spurious symmetries. First, we allow the partial interpenetration of consecutive beads. In addition to the standard high temperature coil phase and the low temperature collapsed phase, this results in a new class of marginally compact ground states comprising conformations reminiscent of α-helices and β-sheets, the building blocks of the native states of globular proteins. We then discuss the effect of a further symmetry breaking of the cylindrical symmetry on attaching a side-sphere to the backbone beads along the negative normal of the chain, to mimic the presence of side chains in real proteins. This leads to the emergence of a novel phase within the previously obtained marginally compact phase, with the appearance of more complex secondary structure assemblies. The potential importance of this new phase in the de novo design of self-assembled peptides is highlighted. We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers.</description><subject>Beads</subject><subject>Biopolymers</subject><subject>Broken symmetry</subject><subject>Coils</subject><subject>Emergence</subject><subject>Helices</subject><subject>High temperature</subject><subject>Hydrophobicity</subject><subject>Low temperature</subject><subject>Models, Molecular</subject><subject>Molecular chains</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Protein Folding</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Secondary structure</subject><subject>Self-assembly</subject><subject>Symmetry</subject><subject>Temperature</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U1P3DAQBmCrApUFeum9yBUXhJTWjh0n4YZWfEmLeoBDb5Fjj7tZ2ZvgyR7y7-tl6VbiwMkjzzMj6zUhXzn7wZmof5oaA2NVwfUnMuOllJmqZHWwr8XvI3KMuGJMVJKrz-RI8LyohVQz8mfRG-0pTiHAGCdqYYQYujUgHZdAh6XGVPaO-nSnIzVL3a3ximqKXRg80NBb8NT18dUjeJdpRAitn7ZjAwxjZwFPyaHTHuHL23lCnm9vnuf32eLX3cP8epEZydiYcQDluHZV4axpVdly52ptlLRtWdiqzIvc1qBE6gstrShkpXIpXZ6mtdTihFzs1g6xf9kAjk3o0ID3eg39Bps8L1gaKBVP9PwdXfWbuE6P26pa1EVebdXlTpnYI0ZwzRC7oOPUcNZs02_m9dPja_rXCZ-9rdy0Aeye_os7ge87ENHsu_-_rxmsS-bbR0b8BdVclSM</recordid><startdate>20190717</startdate><enddate>20190717</enddate><creator>Škrbi, Tatjana</creator><creator>Hoang, Trinh Xuan</creator><creator>Maritan, Amos</creator><creator>Banavar, Jayanth R</creator><creator>Giacometti, Achille</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1245-9842</orcidid></search><sort><creationdate>20190717</creationdate><title>Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides</title><author>Škrbi, Tatjana ; Hoang, Trinh Xuan ; Maritan, Amos ; Banavar, Jayanth R ; Giacometti, Achille</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-1ee6f1af85fdcb67b1ff9ac64db75d87252d9e6385f3a4d35486244f2400a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beads</topic><topic>Biopolymers</topic><topic>Broken symmetry</topic><topic>Coils</topic><topic>Emergence</topic><topic>Helices</topic><topic>High temperature</topic><topic>Hydrophobicity</topic><topic>Low temperature</topic><topic>Models, Molecular</topic><topic>Molecular chains</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Protein Folding</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Secondary structure</topic><topic>Self-assembly</topic><topic>Symmetry</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Škrbi, Tatjana</creatorcontrib><creatorcontrib>Hoang, Trinh Xuan</creatorcontrib><creatorcontrib>Maritan, Amos</creatorcontrib><creatorcontrib>Banavar, Jayanth R</creatorcontrib><creatorcontrib>Giacometti, Achille</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Škrbi, Tatjana</au><au>Hoang, Trinh Xuan</au><au>Maritan, Amos</au><au>Banavar, Jayanth R</au><au>Giacometti, Achille</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2019-07-17</date><risdate>2019</risdate><volume>15</volume><issue>28</issue><spage>5596</spage><epage>5613</epage><pages>5596-5613</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and with a pairwise attractive square well potential accounting for the hydrophobic effect and promoting compaction. We then discuss the consequences of the successive breaking of spurious symmetries. First, we allow the partial interpenetration of consecutive beads. In addition to the standard high temperature coil phase and the low temperature collapsed phase, this results in a new class of marginally compact ground states comprising conformations reminiscent of α-helices and β-sheets, the building blocks of the native states of globular proteins. We then discuss the effect of a further symmetry breaking of the cylindrical symmetry on attaching a side-sphere to the backbone beads along the negative normal of the chain, to mimic the presence of side chains in real proteins. This leads to the emergence of a novel phase within the previously obtained marginally compact phase, with the appearance of more complex secondary structure assemblies. The potential importance of this new phase in the de novo design of self-assembled peptides is highlighted. We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31259346</pmid><doi>10.1039/c9sm00851a</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1245-9842</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2019-07, Vol.15 (28), p.5596-5613
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_C9SM00851A
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Beads
Biopolymers
Broken symmetry
Coils
Emergence
Helices
High temperature
Hydrophobicity
Low temperature
Models, Molecular
Molecular chains
Peptides
Peptides - chemistry
Protein Folding
Protein structure
Proteins
Secondary structure
Self-assembly
Symmetry
Temperature
title Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20symmetry%20determines%20the%20phases%20of%20linear%20chains:%20a%20simple%20model%20for%20the%20self-assembly%20of%20peptides&rft.jtitle=Soft%20matter&rft.au=%C5%A0krbi,%20Tatjana&rft.date=2019-07-17&rft.volume=15&rft.issue=28&rft.spage=5596&rft.epage=5613&rft.pages=5596-5613&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm00851a&rft_dat=%3Cproquest_cross%3E2259395281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259395281&rft_id=info:pmid/31259346&rfr_iscdi=true