Natural rubber-SiO 2 nanohybrids: interface structures and dynamics

Homogeneous dispersion of silica nanoparticles (SiO2 NPs) in natural rubber (NR) is a key challenge for engineering high-performance nanocomposites and elucidation of their structure on a molecular basis. Towards this, the present work devised a novel route for obtaining 3D self-assembled SiO2 NP-NR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2019-03, Vol.15 (13), p.2826-2837
Hauptverfasser: Sattar, Md Abdul, Nair, A Sreekumaran, Xavier, P J, Patnaik, Archita
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2837
container_issue 13
container_start_page 2826
container_title Soft matter
container_volume 15
creator Sattar, Md Abdul
Nair, A Sreekumaran
Xavier, P J
Patnaik, Archita
description Homogeneous dispersion of silica nanoparticles (SiO2 NPs) in natural rubber (NR) is a key challenge for engineering high-performance nanocomposites and elucidation of their structure on a molecular basis. Towards this, the present work devised a novel route for obtaining 3D self-assembled SiO2 NP-NR nanocomposites under aqueous conditions and in the presence of Mg2+, by establishing a molecular bridge that clamped the negatively charged NR and SiO2 colloidal particles with a favoured NR-SiO2 NP hetero-aggregation. The characteristic NR-SiO2 NP hetero-aggregates displayed a decreased heat capacity with increase in the SiO2 mass-fraction, implying a restricted NR chain mobility. Such changes in the interfacial layers were tapped by 29Si NMR, DFT calculations and molecular dynamics simulations towards a mechanistic understanding of the structure and dynamics of the NR/SiO2 NP hybrid. Simple models were used to illustrate basic ideas; specific electrostatic interactions such as ion-dipole and H-bonding interactions proved to be the driving forces for the organized assembly leading to the NR-SiO2 hetero-aggregate over the NR-NR or SiO2 NP-SiO2 NP homo-aggregate. Molecular dynamics simulation of the aqueous canonical ensemble of the hybrid showed the stable molecular conformation to reveal a SiO2 NP spherical core encapsulated by a hydrophobically interconnected NR polymer layer as the outer shell, as a unique structural model. Specifically, the lipid end of the NR was involved electrostatically while the lysine end (the protein part of NR) H-bonded to the core silica cluster thereby restricting random aggregation. The calculated negative free energy changes for the hetero-aggregate composites via their vibrational and rotational spectra proved the spontaneity of composite formation.
doi_str_mv 10.1039/c9sm00254e
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9SM00254E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30816894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c169t-cc15bb123ed97915eae43b9bfbc526109a52f97ad7452883eba6336e3ab4b0d53</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EoqWw4QOQ10gBO37EZoei8pAKXRQkdtG1fSOCmrSyk0X-nkKhq5nF0UhzCLnk7IYzYW-9TS1juZJ4RKa8kDLTRprjQxcfE3KW0hdjwkiuT8lEMMO1sXJKylfohwhrGgfnMGarZklz2kG3-RxdbEK6o03XY6zBI019HPwOx0ShCzSMHbSNT-fkpIZ1wou_nJH3h_lb-ZQtlo_P5f0i81zbPvOeK-d4LjDYwnKFgFI462rnVa45s6Dy2hYQCqlyYwQ60EJoFOCkY0GJGbne7_q4SSliXW1j00IcK86qHxNVaVcvvybmO_hqD28H12I4oP_XxTenp1ma</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Natural rubber-SiO 2 nanohybrids: interface structures and dynamics</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Sattar, Md Abdul ; Nair, A Sreekumaran ; Xavier, P J ; Patnaik, Archita</creator><creatorcontrib>Sattar, Md Abdul ; Nair, A Sreekumaran ; Xavier, P J ; Patnaik, Archita</creatorcontrib><description>Homogeneous dispersion of silica nanoparticles (SiO2 NPs) in natural rubber (NR) is a key challenge for engineering high-performance nanocomposites and elucidation of their structure on a molecular basis. Towards this, the present work devised a novel route for obtaining 3D self-assembled SiO2 NP-NR nanocomposites under aqueous conditions and in the presence of Mg2+, by establishing a molecular bridge that clamped the negatively charged NR and SiO2 colloidal particles with a favoured NR-SiO2 NP hetero-aggregation. The characteristic NR-SiO2 NP hetero-aggregates displayed a decreased heat capacity with increase in the SiO2 mass-fraction, implying a restricted NR chain mobility. Such changes in the interfacial layers were tapped by 29Si NMR, DFT calculations and molecular dynamics simulations towards a mechanistic understanding of the structure and dynamics of the NR/SiO2 NP hybrid. Simple models were used to illustrate basic ideas; specific electrostatic interactions such as ion-dipole and H-bonding interactions proved to be the driving forces for the organized assembly leading to the NR-SiO2 hetero-aggregate over the NR-NR or SiO2 NP-SiO2 NP homo-aggregate. Molecular dynamics simulation of the aqueous canonical ensemble of the hybrid showed the stable molecular conformation to reveal a SiO2 NP spherical core encapsulated by a hydrophobically interconnected NR polymer layer as the outer shell, as a unique structural model. Specifically, the lipid end of the NR was involved electrostatically while the lysine end (the protein part of NR) H-bonded to the core silica cluster thereby restricting random aggregation. The calculated negative free energy changes for the hetero-aggregate composites via their vibrational and rotational spectra proved the spontaneity of composite formation.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm00254e</identifier><identifier>PMID: 30816894</identifier><language>eng</language><publisher>England</publisher><ispartof>Soft matter, 2019-03, Vol.15 (13), p.2826-2837</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c169t-cc15bb123ed97915eae43b9bfbc526109a52f97ad7452883eba6336e3ab4b0d53</citedby><cites>FETCH-LOGICAL-c169t-cc15bb123ed97915eae43b9bfbc526109a52f97ad7452883eba6336e3ab4b0d53</cites><orcidid>0000-0002-4267-6805 ; 0000-0002-0754-7055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30816894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sattar, Md Abdul</creatorcontrib><creatorcontrib>Nair, A Sreekumaran</creatorcontrib><creatorcontrib>Xavier, P J</creatorcontrib><creatorcontrib>Patnaik, Archita</creatorcontrib><title>Natural rubber-SiO 2 nanohybrids: interface structures and dynamics</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Homogeneous dispersion of silica nanoparticles (SiO2 NPs) in natural rubber (NR) is a key challenge for engineering high-performance nanocomposites and elucidation of their structure on a molecular basis. Towards this, the present work devised a novel route for obtaining 3D self-assembled SiO2 NP-NR nanocomposites under aqueous conditions and in the presence of Mg2+, by establishing a molecular bridge that clamped the negatively charged NR and SiO2 colloidal particles with a favoured NR-SiO2 NP hetero-aggregation. The characteristic NR-SiO2 NP hetero-aggregates displayed a decreased heat capacity with increase in the SiO2 mass-fraction, implying a restricted NR chain mobility. Such changes in the interfacial layers were tapped by 29Si NMR, DFT calculations and molecular dynamics simulations towards a mechanistic understanding of the structure and dynamics of the NR/SiO2 NP hybrid. Simple models were used to illustrate basic ideas; specific electrostatic interactions such as ion-dipole and H-bonding interactions proved to be the driving forces for the organized assembly leading to the NR-SiO2 hetero-aggregate over the NR-NR or SiO2 NP-SiO2 NP homo-aggregate. Molecular dynamics simulation of the aqueous canonical ensemble of the hybrid showed the stable molecular conformation to reveal a SiO2 NP spherical core encapsulated by a hydrophobically interconnected NR polymer layer as the outer shell, as a unique structural model. Specifically, the lipid end of the NR was involved electrostatically while the lysine end (the protein part of NR) H-bonded to the core silica cluster thereby restricting random aggregation. The calculated negative free energy changes for the hetero-aggregate composites via their vibrational and rotational spectra proved the spontaneity of composite formation.</description><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURC0EoqWw4QOQ10gBO37EZoei8pAKXRQkdtG1fSOCmrSyk0X-nkKhq5nF0UhzCLnk7IYzYW-9TS1juZJ4RKa8kDLTRprjQxcfE3KW0hdjwkiuT8lEMMO1sXJKylfohwhrGgfnMGarZklz2kG3-RxdbEK6o03XY6zBI019HPwOx0ShCzSMHbSNT-fkpIZ1wou_nJH3h_lb-ZQtlo_P5f0i81zbPvOeK-d4LjDYwnKFgFI462rnVa45s6Dy2hYQCqlyYwQ60EJoFOCkY0GJGbne7_q4SSliXW1j00IcK86qHxNVaVcvvybmO_hqD28H12I4oP_XxTenp1ma</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Sattar, Md Abdul</creator><creator>Nair, A Sreekumaran</creator><creator>Xavier, P J</creator><creator>Patnaik, Archita</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4267-6805</orcidid><orcidid>https://orcid.org/0000-0002-0754-7055</orcidid></search><sort><creationdate>20190327</creationdate><title>Natural rubber-SiO 2 nanohybrids: interface structures and dynamics</title><author>Sattar, Md Abdul ; Nair, A Sreekumaran ; Xavier, P J ; Patnaik, Archita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c169t-cc15bb123ed97915eae43b9bfbc526109a52f97ad7452883eba6336e3ab4b0d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sattar, Md Abdul</creatorcontrib><creatorcontrib>Nair, A Sreekumaran</creatorcontrib><creatorcontrib>Xavier, P J</creatorcontrib><creatorcontrib>Patnaik, Archita</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sattar, Md Abdul</au><au>Nair, A Sreekumaran</au><au>Xavier, P J</au><au>Patnaik, Archita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural rubber-SiO 2 nanohybrids: interface structures and dynamics</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>15</volume><issue>13</issue><spage>2826</spage><epage>2837</epage><pages>2826-2837</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Homogeneous dispersion of silica nanoparticles (SiO2 NPs) in natural rubber (NR) is a key challenge for engineering high-performance nanocomposites and elucidation of their structure on a molecular basis. Towards this, the present work devised a novel route for obtaining 3D self-assembled SiO2 NP-NR nanocomposites under aqueous conditions and in the presence of Mg2+, by establishing a molecular bridge that clamped the negatively charged NR and SiO2 colloidal particles with a favoured NR-SiO2 NP hetero-aggregation. The characteristic NR-SiO2 NP hetero-aggregates displayed a decreased heat capacity with increase in the SiO2 mass-fraction, implying a restricted NR chain mobility. Such changes in the interfacial layers were tapped by 29Si NMR, DFT calculations and molecular dynamics simulations towards a mechanistic understanding of the structure and dynamics of the NR/SiO2 NP hybrid. Simple models were used to illustrate basic ideas; specific electrostatic interactions such as ion-dipole and H-bonding interactions proved to be the driving forces for the organized assembly leading to the NR-SiO2 hetero-aggregate over the NR-NR or SiO2 NP-SiO2 NP homo-aggregate. Molecular dynamics simulation of the aqueous canonical ensemble of the hybrid showed the stable molecular conformation to reveal a SiO2 NP spherical core encapsulated by a hydrophobically interconnected NR polymer layer as the outer shell, as a unique structural model. Specifically, the lipid end of the NR was involved electrostatically while the lysine end (the protein part of NR) H-bonded to the core silica cluster thereby restricting random aggregation. The calculated negative free energy changes for the hetero-aggregate composites via their vibrational and rotational spectra proved the spontaneity of composite formation.</abstract><cop>England</cop><pmid>30816894</pmid><doi>10.1039/c9sm00254e</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4267-6805</orcidid><orcidid>https://orcid.org/0000-0002-0754-7055</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2019-03, Vol.15 (13), p.2826-2837
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_C9SM00254E
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Natural rubber-SiO 2 nanohybrids: interface structures and dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20rubber-SiO%202%20nanohybrids:%20interface%20structures%20and%20dynamics&rft.jtitle=Soft%20matter&rft.au=Sattar,%20Md%20Abdul&rft.date=2019-03-27&rft.volume=15&rft.issue=13&rft.spage=2826&rft.epage=2837&rft.pages=2826-2837&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm00254e&rft_dat=%3Cpubmed_cross%3E30816894%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30816894&rfr_iscdi=true