An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage

Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable energy & fuels 2020-01, Vol.4 (1), p.285-292
Hauptverfasser: Poupin, Lucas, Humphries, Terry D, Paskevicius, Mark, Buckley, Craig E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 1
container_start_page 285
container_title Sustainable energy & fuels
container_volume 4
creator Poupin, Lucas
Humphries, Terry D
Paskevicius, Mark
Buckley, Craig E
description Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology. Thermal batteries using metal hydrides need to store hydrogen gas released during charging, and so far, practical demonstrations have employed volumetric storage of gas. This practical study utilises a low temperature metal hydride, titanium manganese hydride (TiMn 1.5 H x ), to store hydrogen gas, whilst magnesium iron hydride (Mg 2 FeH 6 ) is used as a high temperature thermal battery. The coupled system is able to achieve consistent energy storage and release cycles. With titanium manganese hydride operating at ambient temperature (20 C), Mg 2 FeH 6 has to operate between 350 C and 500 C to counteract the pressure hysteresis displayed by TiMn 1.5 between hydrogen uptake and release. The results attest the high susceptibility of both materials to thermal issues, such as a requirement for large temperature offsets, in order for the battery to achieve full cycling capacity. An energy density of 1488 kJ kg 1 was experimentally attained for 40 g of Mg 2 FeH 6 with a maximum operating temperature around 520 C. Cycling of a high temperature thermal battery using a pair of metal hydrides to store thermal energy and the associated evolved gaseous hydrogen.
doi_str_mv 10.1039/c9se00538b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9SE00538B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327952760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-2dacacc3d6a91163ecb41ca4569db38aa5ed55bb28b74b5a4f2ab8a7c1c012a93</originalsourceid><addsrcrecordid>eNpVkctLw0AQhxdRsNRevAsL3oToPvLaYy31AQUP6jnMbiZ9kGTr7gYN-McbW6l6mmHm4zfwDSHnnF1zJtWNUR4ZS2Suj8hISJVHsWLi-E9_SibebxhjgotYJNmIfE5bih9bdOsG2wA1Xa2XKxqwGUYQOoc0rNA1w0JDCOh6amy3rbGkwVKgtX3_Bze4y-hLty6RVtZRb2twhxBs0S176oN1sMQzclJB7XHyU8fk9W7-MnuIFk_3j7PpIjKxiEMkSjBgjCxTUJynEo2OuYE4SVWpZQ6QYJkkWotcZ7FOIK4E6Bwyww3jApQck8t97tbZtw59KDa2c-1wshBSZCoRWcoG6mpPGWe9d1gV28EKuL7grPgWXMzU83wn-HaAL_aw8-bA_T5AfgEacHrq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327952760</pqid></control><display><type>article</type><title>An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Poupin, Lucas ; Humphries, Terry D ; Paskevicius, Mark ; Buckley, Craig E</creator><creatorcontrib>Poupin, Lucas ; Humphries, Terry D ; Paskevicius, Mark ; Buckley, Craig E</creatorcontrib><description>Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology. Thermal batteries using metal hydrides need to store hydrogen gas released during charging, and so far, practical demonstrations have employed volumetric storage of gas. This practical study utilises a low temperature metal hydride, titanium manganese hydride (TiMn 1.5 H x ), to store hydrogen gas, whilst magnesium iron hydride (Mg 2 FeH 6 ) is used as a high temperature thermal battery. The coupled system is able to achieve consistent energy storage and release cycles. With titanium manganese hydride operating at ambient temperature (20 C), Mg 2 FeH 6 has to operate between 350 C and 500 C to counteract the pressure hysteresis displayed by TiMn 1.5 between hydrogen uptake and release. The results attest the high susceptibility of both materials to thermal issues, such as a requirement for large temperature offsets, in order for the battery to achieve full cycling capacity. An energy density of 1488 kJ kg 1 was experimentally attained for 40 g of Mg 2 FeH 6 with a maximum operating temperature around 520 C. Cycling of a high temperature thermal battery using a pair of metal hydrides to store thermal energy and the associated evolved gaseous hydrogen.</description><identifier>ISSN: 2398-4902</identifier><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/c9se00538b</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Ambient temperature ; Energy storage ; Flux density ; High temperature ; Hydrogen ; Hydrogen storage ; Iron ; Low temperature ; Magnesium ; Manganese ; Metal hydrides ; Metals ; Offsets ; Operating temperature ; Physical properties ; Power plants ; Solar energy ; Solar heating ; Solar power ; Storage batteries ; Temperature requirements ; Thermal batteries ; Thermal energy ; Thermal power ; Thermal power plants ; Titanium</subject><ispartof>Sustainable energy &amp; fuels, 2020-01, Vol.4 (1), p.285-292</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-2dacacc3d6a91163ecb41ca4569db38aa5ed55bb28b74b5a4f2ab8a7c1c012a93</citedby><cites>FETCH-LOGICAL-c424t-2dacacc3d6a91163ecb41ca4569db38aa5ed55bb28b74b5a4f2ab8a7c1c012a93</cites><orcidid>0000-0003-1015-4495 ; 0000-0003-2677-3434 ; 0000-0002-3075-1863 ; 0000-0002-5458-4406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Poupin, Lucas</creatorcontrib><creatorcontrib>Humphries, Terry D</creatorcontrib><creatorcontrib>Paskevicius, Mark</creatorcontrib><creatorcontrib>Buckley, Craig E</creatorcontrib><title>An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage</title><title>Sustainable energy &amp; fuels</title><description>Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology. Thermal batteries using metal hydrides need to store hydrogen gas released during charging, and so far, practical demonstrations have employed volumetric storage of gas. This practical study utilises a low temperature metal hydride, titanium manganese hydride (TiMn 1.5 H x ), to store hydrogen gas, whilst magnesium iron hydride (Mg 2 FeH 6 ) is used as a high temperature thermal battery. The coupled system is able to achieve consistent energy storage and release cycles. With titanium manganese hydride operating at ambient temperature (20 C), Mg 2 FeH 6 has to operate between 350 C and 500 C to counteract the pressure hysteresis displayed by TiMn 1.5 between hydrogen uptake and release. The results attest the high susceptibility of both materials to thermal issues, such as a requirement for large temperature offsets, in order for the battery to achieve full cycling capacity. An energy density of 1488 kJ kg 1 was experimentally attained for 40 g of Mg 2 FeH 6 with a maximum operating temperature around 520 C. Cycling of a high temperature thermal battery using a pair of metal hydrides to store thermal energy and the associated evolved gaseous hydrogen.</description><subject>Ambient temperature</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Iron</subject><subject>Low temperature</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Metal hydrides</subject><subject>Metals</subject><subject>Offsets</subject><subject>Operating temperature</subject><subject>Physical properties</subject><subject>Power plants</subject><subject>Solar energy</subject><subject>Solar heating</subject><subject>Solar power</subject><subject>Storage batteries</subject><subject>Temperature requirements</subject><subject>Thermal batteries</subject><subject>Thermal energy</subject><subject>Thermal power</subject><subject>Thermal power plants</subject><subject>Titanium</subject><issn>2398-4902</issn><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkctLw0AQhxdRsNRevAsL3oToPvLaYy31AQUP6jnMbiZ9kGTr7gYN-McbW6l6mmHm4zfwDSHnnF1zJtWNUR4ZS2Suj8hISJVHsWLi-E9_SibebxhjgotYJNmIfE5bih9bdOsG2wA1Xa2XKxqwGUYQOoc0rNA1w0JDCOh6amy3rbGkwVKgtX3_Bze4y-hLty6RVtZRb2twhxBs0S176oN1sMQzclJB7XHyU8fk9W7-MnuIFk_3j7PpIjKxiEMkSjBgjCxTUJynEo2OuYE4SVWpZQ6QYJkkWotcZ7FOIK4E6Bwyww3jApQck8t97tbZtw59KDa2c-1wshBSZCoRWcoG6mpPGWe9d1gV28EKuL7grPgWXMzU83wn-HaAL_aw8-bA_T5AfgEacHrq</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Poupin, Lucas</creator><creator>Humphries, Terry D</creator><creator>Paskevicius, Mark</creator><creator>Buckley, Craig E</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-1015-4495</orcidid><orcidid>https://orcid.org/0000-0003-2677-3434</orcidid><orcidid>https://orcid.org/0000-0002-3075-1863</orcidid><orcidid>https://orcid.org/0000-0002-5458-4406</orcidid></search><sort><creationdate>20200101</creationdate><title>An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage</title><author>Poupin, Lucas ; Humphries, Terry D ; Paskevicius, Mark ; Buckley, Craig E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-2dacacc3d6a91163ecb41ca4569db38aa5ed55bb28b74b5a4f2ab8a7c1c012a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ambient temperature</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Iron</topic><topic>Low temperature</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Metal hydrides</topic><topic>Metals</topic><topic>Offsets</topic><topic>Operating temperature</topic><topic>Physical properties</topic><topic>Power plants</topic><topic>Solar energy</topic><topic>Solar heating</topic><topic>Solar power</topic><topic>Storage batteries</topic><topic>Temperature requirements</topic><topic>Thermal batteries</topic><topic>Thermal energy</topic><topic>Thermal power</topic><topic>Thermal power plants</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poupin, Lucas</creatorcontrib><creatorcontrib>Humphries, Terry D</creatorcontrib><creatorcontrib>Paskevicius, Mark</creatorcontrib><creatorcontrib>Buckley, Craig E</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poupin, Lucas</au><au>Humphries, Terry D</au><au>Paskevicius, Mark</au><au>Buckley, Craig E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage</atitle><jtitle>Sustainable energy &amp; fuels</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>4</volume><issue>1</issue><spage>285</spage><epage>292</epage><pages>285-292</pages><issn>2398-4902</issn><eissn>2398-4902</eissn><abstract>Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology. Thermal batteries using metal hydrides need to store hydrogen gas released during charging, and so far, practical demonstrations have employed volumetric storage of gas. This practical study utilises a low temperature metal hydride, titanium manganese hydride (TiMn 1.5 H x ), to store hydrogen gas, whilst magnesium iron hydride (Mg 2 FeH 6 ) is used as a high temperature thermal battery. The coupled system is able to achieve consistent energy storage and release cycles. With titanium manganese hydride operating at ambient temperature (20 C), Mg 2 FeH 6 has to operate between 350 C and 500 C to counteract the pressure hysteresis displayed by TiMn 1.5 between hydrogen uptake and release. The results attest the high susceptibility of both materials to thermal issues, such as a requirement for large temperature offsets, in order for the battery to achieve full cycling capacity. An energy density of 1488 kJ kg 1 was experimentally attained for 40 g of Mg 2 FeH 6 with a maximum operating temperature around 520 C. Cycling of a high temperature thermal battery using a pair of metal hydrides to store thermal energy and the associated evolved gaseous hydrogen.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9se00538b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1015-4495</orcidid><orcidid>https://orcid.org/0000-0003-2677-3434</orcidid><orcidid>https://orcid.org/0000-0002-3075-1863</orcidid><orcidid>https://orcid.org/0000-0002-5458-4406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2398-4902
ispartof Sustainable energy & fuels, 2020-01, Vol.4 (1), p.285-292
issn 2398-4902
2398-4902
language eng
recordid cdi_crossref_primary_10_1039_C9SE00538B
source Royal Society Of Chemistry Journals 2008-
subjects Ambient temperature
Energy storage
Flux density
High temperature
Hydrogen
Hydrogen storage
Iron
Low temperature
Magnesium
Manganese
Metal hydrides
Metals
Offsets
Operating temperature
Physical properties
Power plants
Solar energy
Solar heating
Solar power
Storage batteries
Temperature requirements
Thermal batteries
Thermal energy
Thermal power
Thermal power plants
Titanium
title An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20high%20temperature%20thermal%20battery%20coupled%20to%20a%20low%20temperature%20metal%20hydride%20for%20solar%20thermal%20energy%20storage&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Poupin,%20Lucas&rft.date=2020-01-01&rft.volume=4&rft.issue=1&rft.spage=285&rft.epage=292&rft.pages=285-292&rft.issn=2398-4902&rft.eissn=2398-4902&rft_id=info:doi/10.1039/c9se00538b&rft_dat=%3Cproquest_cross%3E2327952760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327952760&rft_id=info:pmid/&rfr_iscdi=true