An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage
Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology....
Gespeichert in:
Veröffentlicht in: | Sustainable energy & fuels 2020-01, Vol.4 (1), p.285-292 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 292 |
---|---|
container_issue | 1 |
container_start_page | 285 |
container_title | Sustainable energy & fuels |
container_volume | 4 |
creator | Poupin, Lucas Humphries, Terry D Paskevicius, Mark Buckley, Craig E |
description | Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology. Thermal batteries using metal hydrides need to store hydrogen gas released during charging, and so far, practical demonstrations have employed volumetric storage of gas. This practical study utilises a low temperature metal hydride, titanium manganese hydride (TiMn
1.5
H
x
), to store hydrogen gas, whilst magnesium iron hydride (Mg
2
FeH
6
) is used as a high temperature thermal battery. The coupled system is able to achieve consistent energy storage and release cycles. With titanium manganese hydride operating at ambient temperature (20 C), Mg
2
FeH
6
has to operate between 350 C and 500 C to counteract the pressure hysteresis displayed by TiMn
1.5
between hydrogen uptake and release. The results attest the high susceptibility of both materials to thermal issues, such as a requirement for large temperature offsets, in order for the battery to achieve full cycling capacity. An energy density of 1488 kJ kg
1
was experimentally attained for 40 g of Mg
2
FeH
6
with a maximum operating temperature around 520 C.
Cycling of a high temperature thermal battery using a pair of metal hydrides to store thermal energy and the associated evolved gaseous hydrogen. |
doi_str_mv | 10.1039/c9se00538b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9SE00538B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327952760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-2dacacc3d6a91163ecb41ca4569db38aa5ed55bb28b74b5a4f2ab8a7c1c012a93</originalsourceid><addsrcrecordid>eNpVkctLw0AQhxdRsNRevAsL3oToPvLaYy31AQUP6jnMbiZ9kGTr7gYN-McbW6l6mmHm4zfwDSHnnF1zJtWNUR4ZS2Suj8hISJVHsWLi-E9_SibebxhjgotYJNmIfE5bih9bdOsG2wA1Xa2XKxqwGUYQOoc0rNA1w0JDCOh6amy3rbGkwVKgtX3_Bze4y-hLty6RVtZRb2twhxBs0S176oN1sMQzclJB7XHyU8fk9W7-MnuIFk_3j7PpIjKxiEMkSjBgjCxTUJynEo2OuYE4SVWpZQ6QYJkkWotcZ7FOIK4E6Bwyww3jApQck8t97tbZtw59KDa2c-1wshBSZCoRWcoG6mpPGWe9d1gV28EKuL7grPgWXMzU83wn-HaAL_aw8-bA_T5AfgEacHrq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327952760</pqid></control><display><type>article</type><title>An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Poupin, Lucas ; Humphries, Terry D ; Paskevicius, Mark ; Buckley, Craig E</creator><creatorcontrib>Poupin, Lucas ; Humphries, Terry D ; Paskevicius, Mark ; Buckley, Craig E</creatorcontrib><description>Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology. Thermal batteries using metal hydrides need to store hydrogen gas released during charging, and so far, practical demonstrations have employed volumetric storage of gas. This practical study utilises a low temperature metal hydride, titanium manganese hydride (TiMn
1.5
H
x
), to store hydrogen gas, whilst magnesium iron hydride (Mg
2
FeH
6
) is used as a high temperature thermal battery. The coupled system is able to achieve consistent energy storage and release cycles. With titanium manganese hydride operating at ambient temperature (20 C), Mg
2
FeH
6
has to operate between 350 C and 500 C to counteract the pressure hysteresis displayed by TiMn
1.5
between hydrogen uptake and release. The results attest the high susceptibility of both materials to thermal issues, such as a requirement for large temperature offsets, in order for the battery to achieve full cycling capacity. An energy density of 1488 kJ kg
1
was experimentally attained for 40 g of Mg
2
FeH
6
with a maximum operating temperature around 520 C.
Cycling of a high temperature thermal battery using a pair of metal hydrides to store thermal energy and the associated evolved gaseous hydrogen.</description><identifier>ISSN: 2398-4902</identifier><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/c9se00538b</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Ambient temperature ; Energy storage ; Flux density ; High temperature ; Hydrogen ; Hydrogen storage ; Iron ; Low temperature ; Magnesium ; Manganese ; Metal hydrides ; Metals ; Offsets ; Operating temperature ; Physical properties ; Power plants ; Solar energy ; Solar heating ; Solar power ; Storage batteries ; Temperature requirements ; Thermal batteries ; Thermal energy ; Thermal power ; Thermal power plants ; Titanium</subject><ispartof>Sustainable energy & fuels, 2020-01, Vol.4 (1), p.285-292</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-2dacacc3d6a91163ecb41ca4569db38aa5ed55bb28b74b5a4f2ab8a7c1c012a93</citedby><cites>FETCH-LOGICAL-c424t-2dacacc3d6a91163ecb41ca4569db38aa5ed55bb28b74b5a4f2ab8a7c1c012a93</cites><orcidid>0000-0003-1015-4495 ; 0000-0003-2677-3434 ; 0000-0002-3075-1863 ; 0000-0002-5458-4406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Poupin, Lucas</creatorcontrib><creatorcontrib>Humphries, Terry D</creatorcontrib><creatorcontrib>Paskevicius, Mark</creatorcontrib><creatorcontrib>Buckley, Craig E</creatorcontrib><title>An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage</title><title>Sustainable energy & fuels</title><description>Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology. Thermal batteries using metal hydrides need to store hydrogen gas released during charging, and so far, practical demonstrations have employed volumetric storage of gas. This practical study utilises a low temperature metal hydride, titanium manganese hydride (TiMn
1.5
H
x
), to store hydrogen gas, whilst magnesium iron hydride (Mg
2
FeH
6
) is used as a high temperature thermal battery. The coupled system is able to achieve consistent energy storage and release cycles. With titanium manganese hydride operating at ambient temperature (20 C), Mg
2
FeH
6
has to operate between 350 C and 500 C to counteract the pressure hysteresis displayed by TiMn
1.5
between hydrogen uptake and release. The results attest the high susceptibility of both materials to thermal issues, such as a requirement for large temperature offsets, in order for the battery to achieve full cycling capacity. An energy density of 1488 kJ kg
1
was experimentally attained for 40 g of Mg
2
FeH
6
with a maximum operating temperature around 520 C.
Cycling of a high temperature thermal battery using a pair of metal hydrides to store thermal energy and the associated evolved gaseous hydrogen.</description><subject>Ambient temperature</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Iron</subject><subject>Low temperature</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Metal hydrides</subject><subject>Metals</subject><subject>Offsets</subject><subject>Operating temperature</subject><subject>Physical properties</subject><subject>Power plants</subject><subject>Solar energy</subject><subject>Solar heating</subject><subject>Solar power</subject><subject>Storage batteries</subject><subject>Temperature requirements</subject><subject>Thermal batteries</subject><subject>Thermal energy</subject><subject>Thermal power</subject><subject>Thermal power plants</subject><subject>Titanium</subject><issn>2398-4902</issn><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkctLw0AQhxdRsNRevAsL3oToPvLaYy31AQUP6jnMbiZ9kGTr7gYN-McbW6l6mmHm4zfwDSHnnF1zJtWNUR4ZS2Suj8hISJVHsWLi-E9_SibebxhjgotYJNmIfE5bih9bdOsG2wA1Xa2XKxqwGUYQOoc0rNA1w0JDCOh6amy3rbGkwVKgtX3_Bze4y-hLty6RVtZRb2twhxBs0S176oN1sMQzclJB7XHyU8fk9W7-MnuIFk_3j7PpIjKxiEMkSjBgjCxTUJynEo2OuYE4SVWpZQ6QYJkkWotcZ7FOIK4E6Bwyww3jApQck8t97tbZtw59KDa2c-1wshBSZCoRWcoG6mpPGWe9d1gV28EKuL7grPgWXMzU83wn-HaAL_aw8-bA_T5AfgEacHrq</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Poupin, Lucas</creator><creator>Humphries, Terry D</creator><creator>Paskevicius, Mark</creator><creator>Buckley, Craig E</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-1015-4495</orcidid><orcidid>https://orcid.org/0000-0003-2677-3434</orcidid><orcidid>https://orcid.org/0000-0002-3075-1863</orcidid><orcidid>https://orcid.org/0000-0002-5458-4406</orcidid></search><sort><creationdate>20200101</creationdate><title>An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage</title><author>Poupin, Lucas ; Humphries, Terry D ; Paskevicius, Mark ; Buckley, Craig E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-2dacacc3d6a91163ecb41ca4569db38aa5ed55bb28b74b5a4f2ab8a7c1c012a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ambient temperature</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Iron</topic><topic>Low temperature</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Metal hydrides</topic><topic>Metals</topic><topic>Offsets</topic><topic>Operating temperature</topic><topic>Physical properties</topic><topic>Power plants</topic><topic>Solar energy</topic><topic>Solar heating</topic><topic>Solar power</topic><topic>Storage batteries</topic><topic>Temperature requirements</topic><topic>Thermal batteries</topic><topic>Thermal energy</topic><topic>Thermal power</topic><topic>Thermal power plants</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poupin, Lucas</creatorcontrib><creatorcontrib>Humphries, Terry D</creatorcontrib><creatorcontrib>Paskevicius, Mark</creatorcontrib><creatorcontrib>Buckley, Craig E</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poupin, Lucas</au><au>Humphries, Terry D</au><au>Paskevicius, Mark</au><au>Buckley, Craig E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage</atitle><jtitle>Sustainable energy & fuels</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>4</volume><issue>1</issue><spage>285</spage><epage>292</epage><pages>285-292</pages><issn>2398-4902</issn><eissn>2398-4902</eissn><abstract>Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that they already operate at the required operational temperature and offer greater energy densities than existing technology. Thermal batteries using metal hydrides need to store hydrogen gas released during charging, and so far, practical demonstrations have employed volumetric storage of gas. This practical study utilises a low temperature metal hydride, titanium manganese hydride (TiMn
1.5
H
x
), to store hydrogen gas, whilst magnesium iron hydride (Mg
2
FeH
6
) is used as a high temperature thermal battery. The coupled system is able to achieve consistent energy storage and release cycles. With titanium manganese hydride operating at ambient temperature (20 C), Mg
2
FeH
6
has to operate between 350 C and 500 C to counteract the pressure hysteresis displayed by TiMn
1.5
between hydrogen uptake and release. The results attest the high susceptibility of both materials to thermal issues, such as a requirement for large temperature offsets, in order for the battery to achieve full cycling capacity. An energy density of 1488 kJ kg
1
was experimentally attained for 40 g of Mg
2
FeH
6
with a maximum operating temperature around 520 C.
Cycling of a high temperature thermal battery using a pair of metal hydrides to store thermal energy and the associated evolved gaseous hydrogen.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9se00538b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1015-4495</orcidid><orcidid>https://orcid.org/0000-0003-2677-3434</orcidid><orcidid>https://orcid.org/0000-0002-3075-1863</orcidid><orcidid>https://orcid.org/0000-0002-5458-4406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2398-4902 |
ispartof | Sustainable energy & fuels, 2020-01, Vol.4 (1), p.285-292 |
issn | 2398-4902 2398-4902 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9SE00538B |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Ambient temperature Energy storage Flux density High temperature Hydrogen Hydrogen storage Iron Low temperature Magnesium Manganese Metal hydrides Metals Offsets Operating temperature Physical properties Power plants Solar energy Solar heating Solar power Storage batteries Temperature requirements Thermal batteries Thermal energy Thermal power Thermal power plants Titanium |
title | An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20high%20temperature%20thermal%20battery%20coupled%20to%20a%20low%20temperature%20metal%20hydride%20for%20solar%20thermal%20energy%20storage&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Poupin,%20Lucas&rft.date=2020-01-01&rft.volume=4&rft.issue=1&rft.spage=285&rft.epage=292&rft.pages=285-292&rft.issn=2398-4902&rft.eissn=2398-4902&rft_id=info:doi/10.1039/c9se00538b&rft_dat=%3Cproquest_cross%3E2327952760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327952760&rft_id=info:pmid/&rfr_iscdi=true |