Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor

Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2019-12, Vol.1 (46), p.1723-1727
Hauptverfasser: Newton, Turner D, Pluth, Michael D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1727
container_issue 46
container_start_page 1723
container_title Chemical science (Cambridge)
container_volume 1
creator Newton, Turner D
Pluth, Michael D
description Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many such pathways proceed through hydrogen selenide (H 2 Se/HSe ) formation. Despite this importance, well-characterized chemistry that enables H 2 Se release under controlled conditions remains lacking. Motivated by this need, we report here the development of a hydrolysis-based H 2 Se donor (TDN1042). Utilizing 31 P and 77 Se NMR experiments, we demonstrate the pH dependence of H 2 Se release and characterize observed reaction intermediates during the hydrolysis mechanism. Finally, we confirm H 2 Se release using electrophilic trapping reagents, which not only demonstrates the fidelity of this donor platform but also provides an efficient method for investigating future H 2 Se donor motifs. Taken together, this work provides an early example of an H 2 Se donor that functions through a well-defined and characterized mechanism. Hydrolysis-based H 2 Se donors provide new chemical tools for investigating biological H 2 Se.
doi_str_mv 10.1039/c9sc04616j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9SC04616J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2318802218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-1317d5ab34a383c345a188ac525ef9df5c7a718067c9dbfa9687a4664dfc6d843</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhiMEYtPYhTuoEhdAKiRxk7ZHVD4GmuAwOFdZ4sKmtBnJirR_T6Fj-GJLfvxaegg5ZvSKUcivdR40TSSTyz0y5DRhsRSQ7-9mTgdkHMKSdgXABE8PyQA4644FH5LnW_xC61Y1NuvIVZGKPjbGO7sJixDPVUAThVpZG9fOom4t9vt3bKKAFpuFweh8MsOLyLjG-SNyUCkbcLztI_J2f_daTOLpy8NjcTONNaSwjhmw1Ag1h0RBBhoSoViWKS24wCo3ldCpSllGZapzM69ULrNUJVImptLSZAmMyFmfu_Lus8WwLpeu9U33suTQRVHOWdZRlz2lvQvBY1Wu_KJWflMyWv7YK4t8Vvzae-rg021kO6_R7NA_Vx1w0gM-6N32Xz98Aw-CcuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318802218</pqid></control><display><type>article</type><title>Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Newton, Turner D ; Pluth, Michael D</creator><creatorcontrib>Newton, Turner D ; Pluth, Michael D</creatorcontrib><description>Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many such pathways proceed through hydrogen selenide (H 2 Se/HSe ) formation. Despite this importance, well-characterized chemistry that enables H 2 Se release under controlled conditions remains lacking. Motivated by this need, we report here the development of a hydrolysis-based H 2 Se donor (TDN1042). Utilizing 31 P and 77 Se NMR experiments, we demonstrate the pH dependence of H 2 Se release and characterize observed reaction intermediates during the hydrolysis mechanism. Finally, we confirm H 2 Se release using electrophilic trapping reagents, which not only demonstrates the fidelity of this donor platform but also provides an efficient method for investigating future H 2 Se donor motifs. Taken together, this work provides an early example of an H 2 Se donor that functions through a well-defined and characterized mechanism. Hydrolysis-based H 2 Se donors provide new chemical tools for investigating biological H 2 Se.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc04616j</identifier><identifier>PMID: 32110352</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Arsenic ; Biomolecules ; Crystallography ; Dependence ; Hydrolysis ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Reaction intermediates ; Reagents ; Selenium</subject><ispartof>Chemical science (Cambridge), 2019-12, Vol.1 (46), p.1723-1727</ispartof><rights>This journal is © The Royal Society of Chemistry 2019.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-1317d5ab34a383c345a188ac525ef9df5c7a718067c9dbfa9687a4664dfc6d843</citedby><cites>FETCH-LOGICAL-c373t-1317d5ab34a383c345a188ac525ef9df5c7a718067c9dbfa9687a4664dfc6d843</cites><orcidid>0000-0002-9098-3463 ; 0000-0003-3604-653X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32110352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Newton, Turner D</creatorcontrib><creatorcontrib>Pluth, Michael D</creatorcontrib><title>Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many such pathways proceed through hydrogen selenide (H 2 Se/HSe ) formation. Despite this importance, well-characterized chemistry that enables H 2 Se release under controlled conditions remains lacking. Motivated by this need, we report here the development of a hydrolysis-based H 2 Se donor (TDN1042). Utilizing 31 P and 77 Se NMR experiments, we demonstrate the pH dependence of H 2 Se release and characterize observed reaction intermediates during the hydrolysis mechanism. Finally, we confirm H 2 Se release using electrophilic trapping reagents, which not only demonstrates the fidelity of this donor platform but also provides an efficient method for investigating future H 2 Se donor motifs. Taken together, this work provides an early example of an H 2 Se donor that functions through a well-defined and characterized mechanism. Hydrolysis-based H 2 Se donors provide new chemical tools for investigating biological H 2 Se.</description><subject>Arsenic</subject><subject>Biomolecules</subject><subject>Crystallography</subject><subject>Dependence</subject><subject>Hydrolysis</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Reaction intermediates</subject><subject>Reagents</subject><subject>Selenium</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkE1PwzAMhiMEYtPYhTuoEhdAKiRxk7ZHVD4GmuAwOFdZ4sKmtBnJirR_T6Fj-GJLfvxaegg5ZvSKUcivdR40TSSTyz0y5DRhsRSQ7-9mTgdkHMKSdgXABE8PyQA4644FH5LnW_xC61Y1NuvIVZGKPjbGO7sJixDPVUAThVpZG9fOom4t9vt3bKKAFpuFweh8MsOLyLjG-SNyUCkbcLztI_J2f_daTOLpy8NjcTONNaSwjhmw1Ag1h0RBBhoSoViWKS24wCo3ldCpSllGZapzM69ULrNUJVImptLSZAmMyFmfu_Lus8WwLpeu9U33suTQRVHOWdZRlz2lvQvBY1Wu_KJWflMyWv7YK4t8Vvzae-rg021kO6_R7NA_Vx1w0gM-6N32Xz98Aw-CcuM</recordid><startdate>20191214</startdate><enddate>20191214</enddate><creator>Newton, Turner D</creator><creator>Pluth, Michael D</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9098-3463</orcidid><orcidid>https://orcid.org/0000-0003-3604-653X</orcidid></search><sort><creationdate>20191214</creationdate><title>Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor</title><author>Newton, Turner D ; Pluth, Michael D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-1317d5ab34a383c345a188ac525ef9df5c7a718067c9dbfa9687a4664dfc6d843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arsenic</topic><topic>Biomolecules</topic><topic>Crystallography</topic><topic>Dependence</topic><topic>Hydrolysis</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Reaction intermediates</topic><topic>Reagents</topic><topic>Selenium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newton, Turner D</creatorcontrib><creatorcontrib>Pluth, Michael D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newton, Turner D</au><au>Pluth, Michael D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-12-14</date><risdate>2019</risdate><volume>1</volume><issue>46</issue><spage>1723</spage><epage>1727</epage><pages>1723-1727</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many such pathways proceed through hydrogen selenide (H 2 Se/HSe ) formation. Despite this importance, well-characterized chemistry that enables H 2 Se release under controlled conditions remains lacking. Motivated by this need, we report here the development of a hydrolysis-based H 2 Se donor (TDN1042). Utilizing 31 P and 77 Se NMR experiments, we demonstrate the pH dependence of H 2 Se release and characterize observed reaction intermediates during the hydrolysis mechanism. Finally, we confirm H 2 Se release using electrophilic trapping reagents, which not only demonstrates the fidelity of this donor platform but also provides an efficient method for investigating future H 2 Se donor motifs. Taken together, this work provides an early example of an H 2 Se donor that functions through a well-defined and characterized mechanism. Hydrolysis-based H 2 Se donors provide new chemical tools for investigating biological H 2 Se.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32110352</pmid><doi>10.1039/c9sc04616j</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9098-3463</orcidid><orcidid>https://orcid.org/0000-0003-3604-653X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2019-12, Vol.1 (46), p.1723-1727
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_C9SC04616J
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Arsenic
Biomolecules
Crystallography
Dependence
Hydrolysis
NMR
Nuclear magnetic resonance
Organic chemistry
Reaction intermediates
Reagents
Selenium
title Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20hydrolysis-based%20small-molecule%20hydrogen%20selenide%20(HSe)%20donor&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Newton,%20Turner%20D&rft.date=2019-12-14&rft.volume=1&rft.issue=46&rft.spage=1723&rft.epage=1727&rft.pages=1723-1727&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc04616j&rft_dat=%3Cproquest_cross%3E2318802218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2318802218&rft_id=info:pmid/32110352&rfr_iscdi=true