Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor
Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2019-12, Vol.1 (46), p.1723-1727 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1727 |
---|---|
container_issue | 46 |
container_start_page | 1723 |
container_title | Chemical science (Cambridge) |
container_volume | 1 |
creator | Newton, Turner D Pluth, Michael D |
description | Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many such pathways proceed through hydrogen selenide (H
2
Se/HSe
) formation. Despite this importance, well-characterized chemistry that enables H
2
Se release under controlled conditions remains lacking. Motivated by this need, we report here the development of a hydrolysis-based H
2
Se donor (TDN1042). Utilizing
31
P and
77
Se NMR experiments, we demonstrate the pH dependence of H
2
Se release and characterize observed reaction intermediates during the hydrolysis mechanism. Finally, we confirm H
2
Se release using electrophilic trapping reagents, which not only demonstrates the fidelity of this donor platform but also provides an efficient method for investigating future H
2
Se donor motifs. Taken together, this work provides an early example of an H
2
Se donor that functions through a well-defined and characterized mechanism.
Hydrolysis-based H
2
Se donors provide new chemical tools for investigating biological H
2
Se. |
doi_str_mv | 10.1039/c9sc04616j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9SC04616J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2318802218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-1317d5ab34a383c345a188ac525ef9df5c7a718067c9dbfa9687a4664dfc6d843</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhiMEYtPYhTuoEhdAKiRxk7ZHVD4GmuAwOFdZ4sKmtBnJirR_T6Fj-GJLfvxaegg5ZvSKUcivdR40TSSTyz0y5DRhsRSQ7-9mTgdkHMKSdgXABE8PyQA4644FH5LnW_xC61Y1NuvIVZGKPjbGO7sJixDPVUAThVpZG9fOom4t9vt3bKKAFpuFweh8MsOLyLjG-SNyUCkbcLztI_J2f_daTOLpy8NjcTONNaSwjhmw1Ag1h0RBBhoSoViWKS24wCo3ldCpSllGZapzM69ULrNUJVImptLSZAmMyFmfu_Lus8WwLpeu9U33suTQRVHOWdZRlz2lvQvBY1Wu_KJWflMyWv7YK4t8Vvzae-rg021kO6_R7NA_Vx1w0gM-6N32Xz98Aw-CcuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318802218</pqid></control><display><type>article</type><title>Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Newton, Turner D ; Pluth, Michael D</creator><creatorcontrib>Newton, Turner D ; Pluth, Michael D</creatorcontrib><description>Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many such pathways proceed through hydrogen selenide (H
2
Se/HSe
) formation. Despite this importance, well-characterized chemistry that enables H
2
Se release under controlled conditions remains lacking. Motivated by this need, we report here the development of a hydrolysis-based H
2
Se donor (TDN1042). Utilizing
31
P and
77
Se NMR experiments, we demonstrate the pH dependence of H
2
Se release and characterize observed reaction intermediates during the hydrolysis mechanism. Finally, we confirm H
2
Se release using electrophilic trapping reagents, which not only demonstrates the fidelity of this donor platform but also provides an efficient method for investigating future H
2
Se donor motifs. Taken together, this work provides an early example of an H
2
Se donor that functions through a well-defined and characterized mechanism.
Hydrolysis-based H
2
Se donors provide new chemical tools for investigating biological H
2
Se.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc04616j</identifier><identifier>PMID: 32110352</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Arsenic ; Biomolecules ; Crystallography ; Dependence ; Hydrolysis ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Reaction intermediates ; Reagents ; Selenium</subject><ispartof>Chemical science (Cambridge), 2019-12, Vol.1 (46), p.1723-1727</ispartof><rights>This journal is © The Royal Society of Chemistry 2019.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-1317d5ab34a383c345a188ac525ef9df5c7a718067c9dbfa9687a4664dfc6d843</citedby><cites>FETCH-LOGICAL-c373t-1317d5ab34a383c345a188ac525ef9df5c7a718067c9dbfa9687a4664dfc6d843</cites><orcidid>0000-0002-9098-3463 ; 0000-0003-3604-653X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32110352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Newton, Turner D</creatorcontrib><creatorcontrib>Pluth, Michael D</creatorcontrib><title>Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many such pathways proceed through hydrogen selenide (H
2
Se/HSe
) formation. Despite this importance, well-characterized chemistry that enables H
2
Se release under controlled conditions remains lacking. Motivated by this need, we report here the development of a hydrolysis-based H
2
Se donor (TDN1042). Utilizing
31
P and
77
Se NMR experiments, we demonstrate the pH dependence of H
2
Se release and characterize observed reaction intermediates during the hydrolysis mechanism. Finally, we confirm H
2
Se release using electrophilic trapping reagents, which not only demonstrates the fidelity of this donor platform but also provides an efficient method for investigating future H
2
Se donor motifs. Taken together, this work provides an early example of an H
2
Se donor that functions through a well-defined and characterized mechanism.
Hydrolysis-based H
2
Se donors provide new chemical tools for investigating biological H
2
Se.</description><subject>Arsenic</subject><subject>Biomolecules</subject><subject>Crystallography</subject><subject>Dependence</subject><subject>Hydrolysis</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Reaction intermediates</subject><subject>Reagents</subject><subject>Selenium</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkE1PwzAMhiMEYtPYhTuoEhdAKiRxk7ZHVD4GmuAwOFdZ4sKmtBnJirR_T6Fj-GJLfvxaegg5ZvSKUcivdR40TSSTyz0y5DRhsRSQ7-9mTgdkHMKSdgXABE8PyQA4644FH5LnW_xC61Y1NuvIVZGKPjbGO7sJixDPVUAThVpZG9fOom4t9vt3bKKAFpuFweh8MsOLyLjG-SNyUCkbcLztI_J2f_daTOLpy8NjcTONNaSwjhmw1Ag1h0RBBhoSoViWKS24wCo3ldCpSllGZapzM69ULrNUJVImptLSZAmMyFmfu_Lus8WwLpeu9U33suTQRVHOWdZRlz2lvQvBY1Wu_KJWflMyWv7YK4t8Vvzae-rg021kO6_R7NA_Vx1w0gM-6N32Xz98Aw-CcuM</recordid><startdate>20191214</startdate><enddate>20191214</enddate><creator>Newton, Turner D</creator><creator>Pluth, Michael D</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9098-3463</orcidid><orcidid>https://orcid.org/0000-0003-3604-653X</orcidid></search><sort><creationdate>20191214</creationdate><title>Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor</title><author>Newton, Turner D ; Pluth, Michael D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-1317d5ab34a383c345a188ac525ef9df5c7a718067c9dbfa9687a4664dfc6d843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arsenic</topic><topic>Biomolecules</topic><topic>Crystallography</topic><topic>Dependence</topic><topic>Hydrolysis</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Reaction intermediates</topic><topic>Reagents</topic><topic>Selenium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newton, Turner D</creatorcontrib><creatorcontrib>Pluth, Michael D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newton, Turner D</au><au>Pluth, Michael D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-12-14</date><risdate>2019</risdate><volume>1</volume><issue>46</issue><spage>1723</spage><epage>1727</epage><pages>1723-1727</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many such pathways proceed through hydrogen selenide (H
2
Se/HSe
) formation. Despite this importance, well-characterized chemistry that enables H
2
Se release under controlled conditions remains lacking. Motivated by this need, we report here the development of a hydrolysis-based H
2
Se donor (TDN1042). Utilizing
31
P and
77
Se NMR experiments, we demonstrate the pH dependence of H
2
Se release and characterize observed reaction intermediates during the hydrolysis mechanism. Finally, we confirm H
2
Se release using electrophilic trapping reagents, which not only demonstrates the fidelity of this donor platform but also provides an efficient method for investigating future H
2
Se donor motifs. Taken together, this work provides an early example of an H
2
Se donor that functions through a well-defined and characterized mechanism.
Hydrolysis-based H
2
Se donors provide new chemical tools for investigating biological H
2
Se.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32110352</pmid><doi>10.1039/c9sc04616j</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9098-3463</orcidid><orcidid>https://orcid.org/0000-0003-3604-653X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2019-12, Vol.1 (46), p.1723-1727 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9SC04616J |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Arsenic Biomolecules Crystallography Dependence Hydrolysis NMR Nuclear magnetic resonance Organic chemistry Reaction intermediates Reagents Selenium |
title | Development of a hydrolysis-based small-molecule hydrogen selenide (HSe) donor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20hydrolysis-based%20small-molecule%20hydrogen%20selenide%20(HSe)%20donor&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Newton,%20Turner%20D&rft.date=2019-12-14&rft.volume=1&rft.issue=46&rft.spage=1723&rft.epage=1727&rft.pages=1723-1727&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc04616j&rft_dat=%3Cproquest_cross%3E2318802218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2318802218&rft_id=info:pmid/32110352&rfr_iscdi=true |