An ionophore-based persistent luminescent Glow Sensor for sodium detection

Optical sensors have numerous positive attributes such as low invasiveness, miniaturizability, biocompatibility, and ease of signal transduction. Recently, there has been a strong research focus on using phosphorescent readout mechanisms, specifically from long-lifetime phosphorescent or persistent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2019-10, Vol.9 (56), p.32821-32825
Hauptverfasser: Ferris, Mark S, Behr, Madeline R, Cash, Kevin J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32825
container_issue 56
container_start_page 32821
container_title RSC advances
container_volume 9
creator Ferris, Mark S
Behr, Madeline R
Cash, Kevin J
description Optical sensors have numerous positive attributes such as low invasiveness, miniaturizability, biocompatibility, and ease of signal transduction. Recently, there has been a strong research focus on using phosphorescent readout mechanisms, specifically from long-lifetime phosphorescent or persistent luminescence particles, for in vitro and in vivo sensors. Persistent luminescence readouts can avoid cellular autofluorescence during biological monitoring, leading to an improved signal-to-noise ratio over a more traditional fluorescence readout. In this study, we show for the first time an ionophore-based optical bulk optode sensor that utilizes persistent luminescence microparticles for ion detection. To achieve this, we combined long-lifetime strontium aluminate-based glow-in-the-dark microparticles with a non-fluorescent pH-responsive dye in a hydrophobic plasticized polymer membrane along with traditional ionophore-based optical sensor components to create a phosphorescent Glow Sensor. The non-fluorescent pH indicator dye gates the strontium aluminate luminescence signal so that it decreases in magnitude with increasing sodium concentration. We characterized the Glow Sensor in terms of emission lifetime, dynamic range, response time, reversibility, selectivity, and stability. A sodium-selective bulk-optode sensor is created by coupling persistent luminescence microparticles with a pH-sensitive dye through an ionophore-based detection mechanism.
doi_str_mv 10.1039/c9ra05313a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9RA05313A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661483445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-fba93279db31d583b1ed71f0df7edfd62a09445e9849cf36cecaa3ebac85225f3</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMoWmpffFcWfBFhNZe95UUoRasiCF6eQzaZ6JbdTU12Ff-9qa21GhgyMB-HM3MQOiD4jGDGzxV3EqeMMLmFBhQnWUxxxrc3-j008n6Gw8tSQjOyi_ZYmlKeEzJAt-M2qmxr56_WQVxKDzqag_OV76Dtorpvqha8WvTT2n5Ej9B66yITyltd9U2koQPVBY19tGNk7WG0-ofo-eryaXId391Pbybju1glPOliU0rOaM51yYhOC1YS0DkxWJsctNEZlZgnSQq8SLgyLFOgpGRQSlWklKaGDdHFUnfelw3ohTcnazF3VSPdp7CyEn8nbfUqXuy74DhnpEiCwMlKwNm3HnwnmiqsWNeyBdt7QbOMJAULJgJ6_A-d2d61YT1BGQ5XZJTTQJ0uKeWs9w7M2gzBYpGSmPCH8XdK4wAfbdpfoz-ZBOBwCTiv1tPfmNkX7DyYUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305523292</pqid></control><display><type>article</type><title>An ionophore-based persistent luminescent Glow Sensor for sodium detection</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Ferris, Mark S ; Behr, Madeline R ; Cash, Kevin J</creator><creatorcontrib>Ferris, Mark S ; Behr, Madeline R ; Cash, Kevin J</creatorcontrib><description>Optical sensors have numerous positive attributes such as low invasiveness, miniaturizability, biocompatibility, and ease of signal transduction. Recently, there has been a strong research focus on using phosphorescent readout mechanisms, specifically from long-lifetime phosphorescent or persistent luminescence particles, for in vitro and in vivo sensors. Persistent luminescence readouts can avoid cellular autofluorescence during biological monitoring, leading to an improved signal-to-noise ratio over a more traditional fluorescence readout. In this study, we show for the first time an ionophore-based optical bulk optode sensor that utilizes persistent luminescence microparticles for ion detection. To achieve this, we combined long-lifetime strontium aluminate-based glow-in-the-dark microparticles with a non-fluorescent pH-responsive dye in a hydrophobic plasticized polymer membrane along with traditional ionophore-based optical sensor components to create a phosphorescent Glow Sensor. The non-fluorescent pH indicator dye gates the strontium aluminate luminescence signal so that it decreases in magnitude with increasing sodium concentration. We characterized the Glow Sensor in terms of emission lifetime, dynamic range, response time, reversibility, selectivity, and stability. A sodium-selective bulk-optode sensor is created by coupling persistent luminescence microparticles with a pH-sensitive dye through an ionophore-based detection mechanism.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra05313a</identifier><identifier>PMID: 35529711</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Biomonitoring ; Chemistry ; Dyes ; Dynamic stability ; Fluorescence ; Ion detectors ; Luminescence ; Microparticles ; Optical measuring instruments ; Phosphorescence ; Response time ; Selectivity ; Sensors ; Signal to noise ratio ; Signal transduction ; Strontium</subject><ispartof>RSC advances, 2019-10, Vol.9 (56), p.32821-32825</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-fba93279db31d583b1ed71f0df7edfd62a09445e9849cf36cecaa3ebac85225f3</citedby><cites>FETCH-LOGICAL-c494t-fba93279db31d583b1ed71f0df7edfd62a09445e9849cf36cecaa3ebac85225f3</cites><orcidid>0000-0001-9500-8336 ; 0000-0002-9748-2530 ; 0000-0003-4369-1318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073184/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073184/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35529711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferris, Mark S</creatorcontrib><creatorcontrib>Behr, Madeline R</creatorcontrib><creatorcontrib>Cash, Kevin J</creatorcontrib><title>An ionophore-based persistent luminescent Glow Sensor for sodium detection</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Optical sensors have numerous positive attributes such as low invasiveness, miniaturizability, biocompatibility, and ease of signal transduction. Recently, there has been a strong research focus on using phosphorescent readout mechanisms, specifically from long-lifetime phosphorescent or persistent luminescence particles, for in vitro and in vivo sensors. Persistent luminescence readouts can avoid cellular autofluorescence during biological monitoring, leading to an improved signal-to-noise ratio over a more traditional fluorescence readout. In this study, we show for the first time an ionophore-based optical bulk optode sensor that utilizes persistent luminescence microparticles for ion detection. To achieve this, we combined long-lifetime strontium aluminate-based glow-in-the-dark microparticles with a non-fluorescent pH-responsive dye in a hydrophobic plasticized polymer membrane along with traditional ionophore-based optical sensor components to create a phosphorescent Glow Sensor. The non-fluorescent pH indicator dye gates the strontium aluminate luminescence signal so that it decreases in magnitude with increasing sodium concentration. We characterized the Glow Sensor in terms of emission lifetime, dynamic range, response time, reversibility, selectivity, and stability. A sodium-selective bulk-optode sensor is created by coupling persistent luminescence microparticles with a pH-sensitive dye through an ionophore-based detection mechanism.</description><subject>Biocompatibility</subject><subject>Biomonitoring</subject><subject>Chemistry</subject><subject>Dyes</subject><subject>Dynamic stability</subject><subject>Fluorescence</subject><subject>Ion detectors</subject><subject>Luminescence</subject><subject>Microparticles</subject><subject>Optical measuring instruments</subject><subject>Phosphorescence</subject><subject>Response time</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Signal transduction</subject><subject>Strontium</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLAzEQhYMoWmpffFcWfBFhNZe95UUoRasiCF6eQzaZ6JbdTU12Ff-9qa21GhgyMB-HM3MQOiD4jGDGzxV3EqeMMLmFBhQnWUxxxrc3-j008n6Gw8tSQjOyi_ZYmlKeEzJAt-M2qmxr56_WQVxKDzqag_OV76Dtorpvqha8WvTT2n5Ej9B66yITyltd9U2koQPVBY19tGNk7WG0-ofo-eryaXId391Pbybju1glPOliU0rOaM51yYhOC1YS0DkxWJsctNEZlZgnSQq8SLgyLFOgpGRQSlWklKaGDdHFUnfelw3ohTcnazF3VSPdp7CyEn8nbfUqXuy74DhnpEiCwMlKwNm3HnwnmiqsWNeyBdt7QbOMJAULJgJ6_A-d2d61YT1BGQ5XZJTTQJ0uKeWs9w7M2gzBYpGSmPCH8XdK4wAfbdpfoz-ZBOBwCTiv1tPfmNkX7DyYUg</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Ferris, Mark S</creator><creator>Behr, Madeline R</creator><creator>Cash, Kevin J</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9500-8336</orcidid><orcidid>https://orcid.org/0000-0002-9748-2530</orcidid><orcidid>https://orcid.org/0000-0003-4369-1318</orcidid></search><sort><creationdate>20191015</creationdate><title>An ionophore-based persistent luminescent Glow Sensor for sodium detection</title><author>Ferris, Mark S ; Behr, Madeline R ; Cash, Kevin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-fba93279db31d583b1ed71f0df7edfd62a09445e9849cf36cecaa3ebac85225f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatibility</topic><topic>Biomonitoring</topic><topic>Chemistry</topic><topic>Dyes</topic><topic>Dynamic stability</topic><topic>Fluorescence</topic><topic>Ion detectors</topic><topic>Luminescence</topic><topic>Microparticles</topic><topic>Optical measuring instruments</topic><topic>Phosphorescence</topic><topic>Response time</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Signal transduction</topic><topic>Strontium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferris, Mark S</creatorcontrib><creatorcontrib>Behr, Madeline R</creatorcontrib><creatorcontrib>Cash, Kevin J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferris, Mark S</au><au>Behr, Madeline R</au><au>Cash, Kevin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ionophore-based persistent luminescent Glow Sensor for sodium detection</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-10-15</date><risdate>2019</risdate><volume>9</volume><issue>56</issue><spage>32821</spage><epage>32825</epage><pages>32821-32825</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Optical sensors have numerous positive attributes such as low invasiveness, miniaturizability, biocompatibility, and ease of signal transduction. Recently, there has been a strong research focus on using phosphorescent readout mechanisms, specifically from long-lifetime phosphorescent or persistent luminescence particles, for in vitro and in vivo sensors. Persistent luminescence readouts can avoid cellular autofluorescence during biological monitoring, leading to an improved signal-to-noise ratio over a more traditional fluorescence readout. In this study, we show for the first time an ionophore-based optical bulk optode sensor that utilizes persistent luminescence microparticles for ion detection. To achieve this, we combined long-lifetime strontium aluminate-based glow-in-the-dark microparticles with a non-fluorescent pH-responsive dye in a hydrophobic plasticized polymer membrane along with traditional ionophore-based optical sensor components to create a phosphorescent Glow Sensor. The non-fluorescent pH indicator dye gates the strontium aluminate luminescence signal so that it decreases in magnitude with increasing sodium concentration. We characterized the Glow Sensor in terms of emission lifetime, dynamic range, response time, reversibility, selectivity, and stability. A sodium-selective bulk-optode sensor is created by coupling persistent luminescence microparticles with a pH-sensitive dye through an ionophore-based detection mechanism.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35529711</pmid><doi>10.1039/c9ra05313a</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9500-8336</orcidid><orcidid>https://orcid.org/0000-0002-9748-2530</orcidid><orcidid>https://orcid.org/0000-0003-4369-1318</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2019-10, Vol.9 (56), p.32821-32825
issn 2046-2069
2046-2069
language eng
recordid cdi_crossref_primary_10_1039_C9RA05313A
source DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects Biocompatibility
Biomonitoring
Chemistry
Dyes
Dynamic stability
Fluorescence
Ion detectors
Luminescence
Microparticles
Optical measuring instruments
Phosphorescence
Response time
Selectivity
Sensors
Signal to noise ratio
Signal transduction
Strontium
title An ionophore-based persistent luminescent Glow Sensor for sodium detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ionophore-based%20persistent%20luminescent%20Glow%20Sensor%20for%20sodium%20detection&rft.jtitle=RSC%20advances&rft.au=Ferris,%20Mark%20S&rft.date=2019-10-15&rft.volume=9&rft.issue=56&rft.spage=32821&rft.epage=32825&rft.pages=32821-32825&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra05313a&rft_dat=%3Cproquest_cross%3E2661483445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305523292&rft_id=info:pmid/35529711&rfr_iscdi=true