An ionophore-based persistent luminescent Glow Sensor for sodium detection
Optical sensors have numerous positive attributes such as low invasiveness, miniaturizability, biocompatibility, and ease of signal transduction. Recently, there has been a strong research focus on using phosphorescent readout mechanisms, specifically from long-lifetime phosphorescent or persistent...
Gespeichert in:
Veröffentlicht in: | RSC advances 2019-10, Vol.9 (56), p.32821-32825 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32825 |
---|---|
container_issue | 56 |
container_start_page | 32821 |
container_title | RSC advances |
container_volume | 9 |
creator | Ferris, Mark S Behr, Madeline R Cash, Kevin J |
description | Optical sensors have numerous positive attributes such as low invasiveness, miniaturizability, biocompatibility, and ease of signal transduction. Recently, there has been a strong research focus on using phosphorescent readout mechanisms, specifically from long-lifetime phosphorescent or persistent luminescence particles, for
in vitro
and
in vivo
sensors. Persistent luminescence readouts can avoid cellular autofluorescence during biological monitoring, leading to an improved signal-to-noise ratio over a more traditional fluorescence readout. In this study, we show for the first time an ionophore-based optical bulk optode sensor that utilizes persistent luminescence microparticles for ion detection. To achieve this, we combined long-lifetime strontium aluminate-based glow-in-the-dark microparticles with a non-fluorescent pH-responsive dye in a hydrophobic plasticized polymer membrane along with traditional ionophore-based optical sensor components to create a phosphorescent Glow Sensor. The non-fluorescent pH indicator dye gates the strontium aluminate luminescence signal so that it decreases in magnitude with increasing sodium concentration. We characterized the Glow Sensor in terms of emission lifetime, dynamic range, response time, reversibility, selectivity, and stability.
A sodium-selective bulk-optode sensor is created by coupling persistent luminescence microparticles with a pH-sensitive dye through an ionophore-based detection mechanism. |
doi_str_mv | 10.1039/c9ra05313a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9RA05313A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661483445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-fba93279db31d583b1ed71f0df7edfd62a09445e9849cf36cecaa3ebac85225f3</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMoWmpffFcWfBFhNZe95UUoRasiCF6eQzaZ6JbdTU12Ff-9qa21GhgyMB-HM3MQOiD4jGDGzxV3EqeMMLmFBhQnWUxxxrc3-j008n6Gw8tSQjOyi_ZYmlKeEzJAt-M2qmxr56_WQVxKDzqag_OV76Dtorpvqha8WvTT2n5Ej9B66yITyltd9U2koQPVBY19tGNk7WG0-ofo-eryaXId391Pbybju1glPOliU0rOaM51yYhOC1YS0DkxWJsctNEZlZgnSQq8SLgyLFOgpGRQSlWklKaGDdHFUnfelw3ohTcnazF3VSPdp7CyEn8nbfUqXuy74DhnpEiCwMlKwNm3HnwnmiqsWNeyBdt7QbOMJAULJgJ6_A-d2d61YT1BGQ5XZJTTQJ0uKeWs9w7M2gzBYpGSmPCH8XdK4wAfbdpfoz-ZBOBwCTiv1tPfmNkX7DyYUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305523292</pqid></control><display><type>article</type><title>An ionophore-based persistent luminescent Glow Sensor for sodium detection</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Ferris, Mark S ; Behr, Madeline R ; Cash, Kevin J</creator><creatorcontrib>Ferris, Mark S ; Behr, Madeline R ; Cash, Kevin J</creatorcontrib><description>Optical sensors have numerous positive attributes such as low invasiveness, miniaturizability, biocompatibility, and ease of signal transduction. Recently, there has been a strong research focus on using phosphorescent readout mechanisms, specifically from long-lifetime phosphorescent or persistent luminescence particles, for
in vitro
and
in vivo
sensors. Persistent luminescence readouts can avoid cellular autofluorescence during biological monitoring, leading to an improved signal-to-noise ratio over a more traditional fluorescence readout. In this study, we show for the first time an ionophore-based optical bulk optode sensor that utilizes persistent luminescence microparticles for ion detection. To achieve this, we combined long-lifetime strontium aluminate-based glow-in-the-dark microparticles with a non-fluorescent pH-responsive dye in a hydrophobic plasticized polymer membrane along with traditional ionophore-based optical sensor components to create a phosphorescent Glow Sensor. The non-fluorescent pH indicator dye gates the strontium aluminate luminescence signal so that it decreases in magnitude with increasing sodium concentration. We characterized the Glow Sensor in terms of emission lifetime, dynamic range, response time, reversibility, selectivity, and stability.
A sodium-selective bulk-optode sensor is created by coupling persistent luminescence microparticles with a pH-sensitive dye through an ionophore-based detection mechanism.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra05313a</identifier><identifier>PMID: 35529711</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Biomonitoring ; Chemistry ; Dyes ; Dynamic stability ; Fluorescence ; Ion detectors ; Luminescence ; Microparticles ; Optical measuring instruments ; Phosphorescence ; Response time ; Selectivity ; Sensors ; Signal to noise ratio ; Signal transduction ; Strontium</subject><ispartof>RSC advances, 2019-10, Vol.9 (56), p.32821-32825</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-fba93279db31d583b1ed71f0df7edfd62a09445e9849cf36cecaa3ebac85225f3</citedby><cites>FETCH-LOGICAL-c494t-fba93279db31d583b1ed71f0df7edfd62a09445e9849cf36cecaa3ebac85225f3</cites><orcidid>0000-0001-9500-8336 ; 0000-0002-9748-2530 ; 0000-0003-4369-1318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073184/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073184/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35529711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferris, Mark S</creatorcontrib><creatorcontrib>Behr, Madeline R</creatorcontrib><creatorcontrib>Cash, Kevin J</creatorcontrib><title>An ionophore-based persistent luminescent Glow Sensor for sodium detection</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Optical sensors have numerous positive attributes such as low invasiveness, miniaturizability, biocompatibility, and ease of signal transduction. Recently, there has been a strong research focus on using phosphorescent readout mechanisms, specifically from long-lifetime phosphorescent or persistent luminescence particles, for
in vitro
and
in vivo
sensors. Persistent luminescence readouts can avoid cellular autofluorescence during biological monitoring, leading to an improved signal-to-noise ratio over a more traditional fluorescence readout. In this study, we show for the first time an ionophore-based optical bulk optode sensor that utilizes persistent luminescence microparticles for ion detection. To achieve this, we combined long-lifetime strontium aluminate-based glow-in-the-dark microparticles with a non-fluorescent pH-responsive dye in a hydrophobic plasticized polymer membrane along with traditional ionophore-based optical sensor components to create a phosphorescent Glow Sensor. The non-fluorescent pH indicator dye gates the strontium aluminate luminescence signal so that it decreases in magnitude with increasing sodium concentration. We characterized the Glow Sensor in terms of emission lifetime, dynamic range, response time, reversibility, selectivity, and stability.
A sodium-selective bulk-optode sensor is created by coupling persistent luminescence microparticles with a pH-sensitive dye through an ionophore-based detection mechanism.</description><subject>Biocompatibility</subject><subject>Biomonitoring</subject><subject>Chemistry</subject><subject>Dyes</subject><subject>Dynamic stability</subject><subject>Fluorescence</subject><subject>Ion detectors</subject><subject>Luminescence</subject><subject>Microparticles</subject><subject>Optical measuring instruments</subject><subject>Phosphorescence</subject><subject>Response time</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Signal transduction</subject><subject>Strontium</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLAzEQhYMoWmpffFcWfBFhNZe95UUoRasiCF6eQzaZ6JbdTU12Ff-9qa21GhgyMB-HM3MQOiD4jGDGzxV3EqeMMLmFBhQnWUxxxrc3-j008n6Gw8tSQjOyi_ZYmlKeEzJAt-M2qmxr56_WQVxKDzqag_OV76Dtorpvqha8WvTT2n5Ej9B66yITyltd9U2koQPVBY19tGNk7WG0-ofo-eryaXId391Pbybju1glPOliU0rOaM51yYhOC1YS0DkxWJsctNEZlZgnSQq8SLgyLFOgpGRQSlWklKaGDdHFUnfelw3ohTcnazF3VSPdp7CyEn8nbfUqXuy74DhnpEiCwMlKwNm3HnwnmiqsWNeyBdt7QbOMJAULJgJ6_A-d2d61YT1BGQ5XZJTTQJ0uKeWs9w7M2gzBYpGSmPCH8XdK4wAfbdpfoz-ZBOBwCTiv1tPfmNkX7DyYUg</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Ferris, Mark S</creator><creator>Behr, Madeline R</creator><creator>Cash, Kevin J</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9500-8336</orcidid><orcidid>https://orcid.org/0000-0002-9748-2530</orcidid><orcidid>https://orcid.org/0000-0003-4369-1318</orcidid></search><sort><creationdate>20191015</creationdate><title>An ionophore-based persistent luminescent Glow Sensor for sodium detection</title><author>Ferris, Mark S ; Behr, Madeline R ; Cash, Kevin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-fba93279db31d583b1ed71f0df7edfd62a09445e9849cf36cecaa3ebac85225f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatibility</topic><topic>Biomonitoring</topic><topic>Chemistry</topic><topic>Dyes</topic><topic>Dynamic stability</topic><topic>Fluorescence</topic><topic>Ion detectors</topic><topic>Luminescence</topic><topic>Microparticles</topic><topic>Optical measuring instruments</topic><topic>Phosphorescence</topic><topic>Response time</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Signal transduction</topic><topic>Strontium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferris, Mark S</creatorcontrib><creatorcontrib>Behr, Madeline R</creatorcontrib><creatorcontrib>Cash, Kevin J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferris, Mark S</au><au>Behr, Madeline R</au><au>Cash, Kevin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ionophore-based persistent luminescent Glow Sensor for sodium detection</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-10-15</date><risdate>2019</risdate><volume>9</volume><issue>56</issue><spage>32821</spage><epage>32825</epage><pages>32821-32825</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Optical sensors have numerous positive attributes such as low invasiveness, miniaturizability, biocompatibility, and ease of signal transduction. Recently, there has been a strong research focus on using phosphorescent readout mechanisms, specifically from long-lifetime phosphorescent or persistent luminescence particles, for
in vitro
and
in vivo
sensors. Persistent luminescence readouts can avoid cellular autofluorescence during biological monitoring, leading to an improved signal-to-noise ratio over a more traditional fluorescence readout. In this study, we show for the first time an ionophore-based optical bulk optode sensor that utilizes persistent luminescence microparticles for ion detection. To achieve this, we combined long-lifetime strontium aluminate-based glow-in-the-dark microparticles with a non-fluorescent pH-responsive dye in a hydrophobic plasticized polymer membrane along with traditional ionophore-based optical sensor components to create a phosphorescent Glow Sensor. The non-fluorescent pH indicator dye gates the strontium aluminate luminescence signal so that it decreases in magnitude with increasing sodium concentration. We characterized the Glow Sensor in terms of emission lifetime, dynamic range, response time, reversibility, selectivity, and stability.
A sodium-selective bulk-optode sensor is created by coupling persistent luminescence microparticles with a pH-sensitive dye through an ionophore-based detection mechanism.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35529711</pmid><doi>10.1039/c9ra05313a</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9500-8336</orcidid><orcidid>https://orcid.org/0000-0002-9748-2530</orcidid><orcidid>https://orcid.org/0000-0003-4369-1318</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2019-10, Vol.9 (56), p.32821-32825 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9RA05313A |
source | DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Biocompatibility Biomonitoring Chemistry Dyes Dynamic stability Fluorescence Ion detectors Luminescence Microparticles Optical measuring instruments Phosphorescence Response time Selectivity Sensors Signal to noise ratio Signal transduction Strontium |
title | An ionophore-based persistent luminescent Glow Sensor for sodium detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ionophore-based%20persistent%20luminescent%20Glow%20Sensor%20for%20sodium%20detection&rft.jtitle=RSC%20advances&rft.au=Ferris,%20Mark%20S&rft.date=2019-10-15&rft.volume=9&rft.issue=56&rft.spage=32821&rft.epage=32825&rft.pages=32821-32825&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra05313a&rft_dat=%3Cproquest_cross%3E2661483445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305523292&rft_id=info:pmid/35529711&rfr_iscdi=true |