Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method
Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization. However, simulation of hydrolysis of cellulose and species transport in multiphase systems is still missing. In this paper, a multiphase lattice Boltzmann method of the Shan-Chen model has been app...
Gespeichert in:
Veröffentlicht in: | RSC advances 2019-04, Vol.9 (23), p.12846-12853 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12853 |
---|---|
container_issue | 23 |
container_start_page | 12846 |
container_title | RSC advances |
container_volume | 9 |
creator | Mei, Qun Wei, Xiangqian Sun, Weitao Zhang, Xinghua Li, Wenzhi Ma, Longlong |
description | Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization. However, simulation of hydrolysis of cellulose and species transport in multiphase systems is still missing. In this paper, a multiphase lattice Boltzmann method of the Shan-Chen model has been applied for simulating the complex chemical reactions and interphase mass transfer in a liquid membrane catalytic reactor. For the sake of simplification, a single particle liquid membrane catalytic model is developed to simulate the hydrolysis of cellulose into HMF and its side reactions, which include the adsorption of cellulose particles on the liquid membrane, the complex chemical reactions inside the liquid membrane and the interphase transfer of HMF. This simulation presents the results of hydrolysis of cellulose and the HMF transport process. Additionally, the results show that the thinner liquid membrane thickness is beneficial for increasing the yield of HMF.
Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization. |
doi_str_mv | 10.1039/c9ra02090j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9RA02090J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661080691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-aaa6a1fc5aa7be07f164c32356de949d244b138ea3d8dfe48acb3876cab6abb83</originalsourceid><addsrcrecordid>eNpdkttrFDEYxQdRbKl98V0J-CKF0dwmk3kR6lJvLAiiz-HLZbqzZCZtkilO_efNdutaDYEEzo_Dl3NSVc8JfkMw696aLgKmuMPbR9UxxVzUFIvu8YP7UXWa0haXJRpCBXlaHbGmoVgSflz9Wg_X82DR6EYdYXLIQAa_5MGgMVjnUejRZrEx-OV2mC6Rcd7PPiSHhikH1NR34s9ldHmz-H6OZYNHGpKzKEwobxzykIufQ--Dz7cjTBPa0cE-q5704JM7vT9Pqh8fLr6vPtXrrx8_r87XteFU5hoABJDeNACtdrjtieCGUdYI6zreWcq5Jkw6YFba3nEJRjPZCgNagNaSnVTv9r5Xsx6dNW7KZUZ1FYcR4qICDOpfZRo26jLcqA4L1jY7g9f3BjFczy5lNQ5pl0QJLMxJUSEIliVqUtBX_6HbMMepPE9RSkTbSS54oc72lIkhpej6wzAEq12tatV9O7-r9UuBXz4c_4D-KbEAL_ZATOag_v0X7Deaa6tv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216798464</pqid></control><display><type>article</type><title>Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Mei, Qun ; Wei, Xiangqian ; Sun, Weitao ; Zhang, Xinghua ; Li, Wenzhi ; Ma, Longlong</creator><creatorcontrib>Mei, Qun ; Wei, Xiangqian ; Sun, Weitao ; Zhang, Xinghua ; Li, Wenzhi ; Ma, Longlong</creatorcontrib><description>Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization. However, simulation of hydrolysis of cellulose and species transport in multiphase systems is still missing. In this paper, a multiphase lattice Boltzmann method of the Shan-Chen model has been applied for simulating the complex chemical reactions and interphase mass transfer in a liquid membrane catalytic reactor. For the sake of simplification, a single particle liquid membrane catalytic model is developed to simulate the hydrolysis of cellulose into HMF and its side reactions, which include the adsorption of cellulose particles on the liquid membrane, the complex chemical reactions inside the liquid membrane and the interphase transfer of HMF. This simulation presents the results of hydrolysis of cellulose and the HMF transport process. Additionally, the results show that the thinner liquid membrane thickness is beneficial for increasing the yield of HMF.
Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra02090j</identifier><identifier>PMID: 35520814</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalysis ; Cellulose ; Chemical reactions ; Chemistry ; Computer simulation ; Copper ; Hydrolysis ; Hydroxymethylfurfural ; Mass transfer ; Multiphase ; Organic chemistry ; Transport processes</subject><ispartof>RSC advances, 2019-04, Vol.9 (23), p.12846-12853</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-aaa6a1fc5aa7be07f164c32356de949d244b138ea3d8dfe48acb3876cab6abb83</citedby><cites>FETCH-LOGICAL-c428t-aaa6a1fc5aa7be07f164c32356de949d244b138ea3d8dfe48acb3876cab6abb83</cites><orcidid>0000-0002-6036-0548 ; 0000-0002-5619-2270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063758/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063758/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35520814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Qun</creatorcontrib><creatorcontrib>Wei, Xiangqian</creatorcontrib><creatorcontrib>Sun, Weitao</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Li, Wenzhi</creatorcontrib><creatorcontrib>Ma, Longlong</creatorcontrib><title>Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization. However, simulation of hydrolysis of cellulose and species transport in multiphase systems is still missing. In this paper, a multiphase lattice Boltzmann method of the Shan-Chen model has been applied for simulating the complex chemical reactions and interphase mass transfer in a liquid membrane catalytic reactor. For the sake of simplification, a single particle liquid membrane catalytic model is developed to simulate the hydrolysis of cellulose into HMF and its side reactions, which include the adsorption of cellulose particles on the liquid membrane, the complex chemical reactions inside the liquid membrane and the interphase transfer of HMF. This simulation presents the results of hydrolysis of cellulose and the HMF transport process. Additionally, the results show that the thinner liquid membrane thickness is beneficial for increasing the yield of HMF.
Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization.</description><subject>Catalysis</subject><subject>Cellulose</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Hydrolysis</subject><subject>Hydroxymethylfurfural</subject><subject>Mass transfer</subject><subject>Multiphase</subject><subject>Organic chemistry</subject><subject>Transport processes</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkttrFDEYxQdRbKl98V0J-CKF0dwmk3kR6lJvLAiiz-HLZbqzZCZtkilO_efNdutaDYEEzo_Dl3NSVc8JfkMw696aLgKmuMPbR9UxxVzUFIvu8YP7UXWa0haXJRpCBXlaHbGmoVgSflz9Wg_X82DR6EYdYXLIQAa_5MGgMVjnUejRZrEx-OV2mC6Rcd7PPiSHhikH1NR34s9ldHmz-H6OZYNHGpKzKEwobxzykIufQ--Dz7cjTBPa0cE-q5704JM7vT9Pqh8fLr6vPtXrrx8_r87XteFU5hoABJDeNACtdrjtieCGUdYI6zreWcq5Jkw6YFba3nEJRjPZCgNagNaSnVTv9r5Xsx6dNW7KZUZ1FYcR4qICDOpfZRo26jLcqA4L1jY7g9f3BjFczy5lNQ5pl0QJLMxJUSEIliVqUtBX_6HbMMepPE9RSkTbSS54oc72lIkhpej6wzAEq12tatV9O7-r9UuBXz4c_4D-KbEAL_ZATOag_v0X7Deaa6tv</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Mei, Qun</creator><creator>Wei, Xiangqian</creator><creator>Sun, Weitao</creator><creator>Zhang, Xinghua</creator><creator>Li, Wenzhi</creator><creator>Ma, Longlong</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6036-0548</orcidid><orcidid>https://orcid.org/0000-0002-5619-2270</orcidid></search><sort><creationdate>20190425</creationdate><title>Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method</title><author>Mei, Qun ; Wei, Xiangqian ; Sun, Weitao ; Zhang, Xinghua ; Li, Wenzhi ; Ma, Longlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-aaa6a1fc5aa7be07f164c32356de949d244b138ea3d8dfe48acb3876cab6abb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Cellulose</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Hydrolysis</topic><topic>Hydroxymethylfurfural</topic><topic>Mass transfer</topic><topic>Multiphase</topic><topic>Organic chemistry</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Qun</creatorcontrib><creatorcontrib>Wei, Xiangqian</creatorcontrib><creatorcontrib>Sun, Weitao</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Li, Wenzhi</creatorcontrib><creatorcontrib>Ma, Longlong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Qun</au><au>Wei, Xiangqian</au><au>Sun, Weitao</au><au>Zhang, Xinghua</au><au>Li, Wenzhi</au><au>Ma, Longlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-04-25</date><risdate>2019</risdate><volume>9</volume><issue>23</issue><spage>12846</spage><epage>12853</epage><pages>12846-12853</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization. However, simulation of hydrolysis of cellulose and species transport in multiphase systems is still missing. In this paper, a multiphase lattice Boltzmann method of the Shan-Chen model has been applied for simulating the complex chemical reactions and interphase mass transfer in a liquid membrane catalytic reactor. For the sake of simplification, a single particle liquid membrane catalytic model is developed to simulate the hydrolysis of cellulose into HMF and its side reactions, which include the adsorption of cellulose particles on the liquid membrane, the complex chemical reactions inside the liquid membrane and the interphase transfer of HMF. This simulation presents the results of hydrolysis of cellulose and the HMF transport process. Additionally, the results show that the thinner liquid membrane thickness is beneficial for increasing the yield of HMF.
Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35520814</pmid><doi>10.1039/c9ra02090j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6036-0548</orcidid><orcidid>https://orcid.org/0000-0002-5619-2270</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2019-04, Vol.9 (23), p.12846-12853 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9RA02090J |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Catalysis Cellulose Chemical reactions Chemistry Computer simulation Copper Hydrolysis Hydroxymethylfurfural Mass transfer Multiphase Organic chemistry Transport processes |
title | Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20membrane%20catalytic%20model%20of%20hydrolyzing%20cellulose%20into%205-hydroxymethylfurfural%20based%20on%20the%20lattice%20Boltzmann%20method&rft.jtitle=RSC%20advances&rft.au=Mei,%20Qun&rft.date=2019-04-25&rft.volume=9&rft.issue=23&rft.spage=12846&rft.epage=12853&rft.pages=12846-12853&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra02090j&rft_dat=%3Cproquest_cross%3E2661080691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216798464&rft_id=info:pmid/35520814&rfr_iscdi=true |