Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method

Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization. However, simulation of hydrolysis of cellulose and species transport in multiphase systems is still missing. In this paper, a multiphase lattice Boltzmann method of the Shan-Chen model has been app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2019-04, Vol.9 (23), p.12846-12853
Hauptverfasser: Mei, Qun, Wei, Xiangqian, Sun, Weitao, Zhang, Xinghua, Li, Wenzhi, Ma, Longlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12853
container_issue 23
container_start_page 12846
container_title RSC advances
container_volume 9
creator Mei, Qun
Wei, Xiangqian
Sun, Weitao
Zhang, Xinghua
Li, Wenzhi
Ma, Longlong
description Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization. However, simulation of hydrolysis of cellulose and species transport in multiphase systems is still missing. In this paper, a multiphase lattice Boltzmann method of the Shan-Chen model has been applied for simulating the complex chemical reactions and interphase mass transfer in a liquid membrane catalytic reactor. For the sake of simplification, a single particle liquid membrane catalytic model is developed to simulate the hydrolysis of cellulose into HMF and its side reactions, which include the adsorption of cellulose particles on the liquid membrane, the complex chemical reactions inside the liquid membrane and the interphase transfer of HMF. This simulation presents the results of hydrolysis of cellulose and the HMF transport process. Additionally, the results show that the thinner liquid membrane thickness is beneficial for increasing the yield of HMF. Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization.
doi_str_mv 10.1039/c9ra02090j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9RA02090J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661080691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-aaa6a1fc5aa7be07f164c32356de949d244b138ea3d8dfe48acb3876cab6abb83</originalsourceid><addsrcrecordid>eNpdkttrFDEYxQdRbKl98V0J-CKF0dwmk3kR6lJvLAiiz-HLZbqzZCZtkilO_efNdutaDYEEzo_Dl3NSVc8JfkMw696aLgKmuMPbR9UxxVzUFIvu8YP7UXWa0haXJRpCBXlaHbGmoVgSflz9Wg_X82DR6EYdYXLIQAa_5MGgMVjnUejRZrEx-OV2mC6Rcd7PPiSHhikH1NR34s9ldHmz-H6OZYNHGpKzKEwobxzykIufQ--Dz7cjTBPa0cE-q5704JM7vT9Pqh8fLr6vPtXrrx8_r87XteFU5hoABJDeNACtdrjtieCGUdYI6zreWcq5Jkw6YFba3nEJRjPZCgNagNaSnVTv9r5Xsx6dNW7KZUZ1FYcR4qICDOpfZRo26jLcqA4L1jY7g9f3BjFczy5lNQ5pl0QJLMxJUSEIliVqUtBX_6HbMMepPE9RSkTbSS54oc72lIkhpej6wzAEq12tatV9O7-r9UuBXz4c_4D-KbEAL_ZATOag_v0X7Deaa6tv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216798464</pqid></control><display><type>article</type><title>Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Mei, Qun ; Wei, Xiangqian ; Sun, Weitao ; Zhang, Xinghua ; Li, Wenzhi ; Ma, Longlong</creator><creatorcontrib>Mei, Qun ; Wei, Xiangqian ; Sun, Weitao ; Zhang, Xinghua ; Li, Wenzhi ; Ma, Longlong</creatorcontrib><description>Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization. However, simulation of hydrolysis of cellulose and species transport in multiphase systems is still missing. In this paper, a multiphase lattice Boltzmann method of the Shan-Chen model has been applied for simulating the complex chemical reactions and interphase mass transfer in a liquid membrane catalytic reactor. For the sake of simplification, a single particle liquid membrane catalytic model is developed to simulate the hydrolysis of cellulose into HMF and its side reactions, which include the adsorption of cellulose particles on the liquid membrane, the complex chemical reactions inside the liquid membrane and the interphase transfer of HMF. This simulation presents the results of hydrolysis of cellulose and the HMF transport process. Additionally, the results show that the thinner liquid membrane thickness is beneficial for increasing the yield of HMF. Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra02090j</identifier><identifier>PMID: 35520814</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalysis ; Cellulose ; Chemical reactions ; Chemistry ; Computer simulation ; Copper ; Hydrolysis ; Hydroxymethylfurfural ; Mass transfer ; Multiphase ; Organic chemistry ; Transport processes</subject><ispartof>RSC advances, 2019-04, Vol.9 (23), p.12846-12853</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-aaa6a1fc5aa7be07f164c32356de949d244b138ea3d8dfe48acb3876cab6abb83</citedby><cites>FETCH-LOGICAL-c428t-aaa6a1fc5aa7be07f164c32356de949d244b138ea3d8dfe48acb3876cab6abb83</cites><orcidid>0000-0002-6036-0548 ; 0000-0002-5619-2270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063758/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063758/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35520814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Qun</creatorcontrib><creatorcontrib>Wei, Xiangqian</creatorcontrib><creatorcontrib>Sun, Weitao</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Li, Wenzhi</creatorcontrib><creatorcontrib>Ma, Longlong</creatorcontrib><title>Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization. However, simulation of hydrolysis of cellulose and species transport in multiphase systems is still missing. In this paper, a multiphase lattice Boltzmann method of the Shan-Chen model has been applied for simulating the complex chemical reactions and interphase mass transfer in a liquid membrane catalytic reactor. For the sake of simplification, a single particle liquid membrane catalytic model is developed to simulate the hydrolysis of cellulose into HMF and its side reactions, which include the adsorption of cellulose particles on the liquid membrane, the complex chemical reactions inside the liquid membrane and the interphase transfer of HMF. This simulation presents the results of hydrolysis of cellulose and the HMF transport process. Additionally, the results show that the thinner liquid membrane thickness is beneficial for increasing the yield of HMF. Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization.</description><subject>Catalysis</subject><subject>Cellulose</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Hydrolysis</subject><subject>Hydroxymethylfurfural</subject><subject>Mass transfer</subject><subject>Multiphase</subject><subject>Organic chemistry</subject><subject>Transport processes</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkttrFDEYxQdRbKl98V0J-CKF0dwmk3kR6lJvLAiiz-HLZbqzZCZtkilO_efNdutaDYEEzo_Dl3NSVc8JfkMw696aLgKmuMPbR9UxxVzUFIvu8YP7UXWa0haXJRpCBXlaHbGmoVgSflz9Wg_X82DR6EYdYXLIQAa_5MGgMVjnUejRZrEx-OV2mC6Rcd7PPiSHhikH1NR34s9ldHmz-H6OZYNHGpKzKEwobxzykIufQ--Dz7cjTBPa0cE-q5704JM7vT9Pqh8fLr6vPtXrrx8_r87XteFU5hoABJDeNACtdrjtieCGUdYI6zreWcq5Jkw6YFba3nEJRjPZCgNagNaSnVTv9r5Xsx6dNW7KZUZ1FYcR4qICDOpfZRo26jLcqA4L1jY7g9f3BjFczy5lNQ5pl0QJLMxJUSEIliVqUtBX_6HbMMepPE9RSkTbSS54oc72lIkhpej6wzAEq12tatV9O7-r9UuBXz4c_4D-KbEAL_ZATOag_v0X7Deaa6tv</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Mei, Qun</creator><creator>Wei, Xiangqian</creator><creator>Sun, Weitao</creator><creator>Zhang, Xinghua</creator><creator>Li, Wenzhi</creator><creator>Ma, Longlong</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6036-0548</orcidid><orcidid>https://orcid.org/0000-0002-5619-2270</orcidid></search><sort><creationdate>20190425</creationdate><title>Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method</title><author>Mei, Qun ; Wei, Xiangqian ; Sun, Weitao ; Zhang, Xinghua ; Li, Wenzhi ; Ma, Longlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-aaa6a1fc5aa7be07f164c32356de949d244b138ea3d8dfe48acb3876cab6abb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Cellulose</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Hydrolysis</topic><topic>Hydroxymethylfurfural</topic><topic>Mass transfer</topic><topic>Multiphase</topic><topic>Organic chemistry</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Qun</creatorcontrib><creatorcontrib>Wei, Xiangqian</creatorcontrib><creatorcontrib>Sun, Weitao</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Li, Wenzhi</creatorcontrib><creatorcontrib>Ma, Longlong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Qun</au><au>Wei, Xiangqian</au><au>Sun, Weitao</au><au>Zhang, Xinghua</au><au>Li, Wenzhi</au><au>Ma, Longlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-04-25</date><risdate>2019</risdate><volume>9</volume><issue>23</issue><spage>12846</spage><epage>12853</epage><pages>12846-12853</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization. However, simulation of hydrolysis of cellulose and species transport in multiphase systems is still missing. In this paper, a multiphase lattice Boltzmann method of the Shan-Chen model has been applied for simulating the complex chemical reactions and interphase mass transfer in a liquid membrane catalytic reactor. For the sake of simplification, a single particle liquid membrane catalytic model is developed to simulate the hydrolysis of cellulose into HMF and its side reactions, which include the adsorption of cellulose particles on the liquid membrane, the complex chemical reactions inside the liquid membrane and the interphase transfer of HMF. This simulation presents the results of hydrolysis of cellulose and the HMF transport process. Additionally, the results show that the thinner liquid membrane thickness is beneficial for increasing the yield of HMF. Conversion of cellulose to 5-hydroxymethylfurfural (HMF) is an important means of biomass utilization.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35520814</pmid><doi>10.1039/c9ra02090j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6036-0548</orcidid><orcidid>https://orcid.org/0000-0002-5619-2270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2019-04, Vol.9 (23), p.12846-12853
issn 2046-2069
2046-2069
language eng
recordid cdi_crossref_primary_10_1039_C9RA02090J
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Catalysis
Cellulose
Chemical reactions
Chemistry
Computer simulation
Copper
Hydrolysis
Hydroxymethylfurfural
Mass transfer
Multiphase
Organic chemistry
Transport processes
title Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20membrane%20catalytic%20model%20of%20hydrolyzing%20cellulose%20into%205-hydroxymethylfurfural%20based%20on%20the%20lattice%20Boltzmann%20method&rft.jtitle=RSC%20advances&rft.au=Mei,%20Qun&rft.date=2019-04-25&rft.volume=9&rft.issue=23&rft.spage=12846&rft.epage=12853&rft.pages=12846-12853&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra02090j&rft_dat=%3Cproquest_cross%3E2661080691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216798464&rft_id=info:pmid/35520814&rfr_iscdi=true