On the divalent character of the Eu atoms in the ternary Zintl phases Eu 5 In 2 Pn 6 and Eu 3 MAs 3 (Pn = As–Bi; M = Al, Ga)

Five Zintl phases in the ternary system Eu–M–Pn (M = Al, In; Pn = As, Sb, Bi) were prepared from the elements in tantalum containers. Eu 5 In 2 As 6 and Eu 5 In 2 Sb 6 crystallize in the orthorhombic Ca 5 Ga 2 As 6 type structure ( Pbam , oP 26), while Eu 5 In 2 Bi 6 is isostructural to orthorhombic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry frontiers 2020-04, Vol.4 (4), p.1231-1248
Hauptverfasser: Radzieowski, Mathis, Stegemann, Frank, Klenner, Steffen, Zhang, Yuemei, Fokwa, Boniface P. T., Janka, Oliver
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1248
container_issue 4
container_start_page 1231
container_title Materials chemistry frontiers
container_volume 4
creator Radzieowski, Mathis
Stegemann, Frank
Klenner, Steffen
Zhang, Yuemei
Fokwa, Boniface P. T.
Janka, Oliver
description Five Zintl phases in the ternary system Eu–M–Pn (M = Al, In; Pn = As, Sb, Bi) were prepared from the elements in tantalum containers. Eu 5 In 2 As 6 and Eu 5 In 2 Sb 6 crystallize in the orthorhombic Ca 5 Ga 2 As 6 type structure ( Pbam , oP 26), while Eu 5 In 2 Bi 6 is isostructural to orthorhombic Ca 5 Al 2 Bi 6 ( Pbam , oP 26). Eu 3 AlAs 3 adopts a monoclinic structure type ( P 2 1 / c , mP 28), which is isopointal to Rb 3 TlO 3 , and Eu 3 GaAs 3 ( Cmce , oS 56), finally, crystallizes in the orthorhombic Ba 3 AlSb 3 type structure. All structures have been refined from single crystal X-ray diffraction experiments and can be considered to be Zintl phases with a valence precise sum formula according to (Eu 2+ ) 5 (In 3+ ) 2 (Pn 3− ) 4 (Pn 2− ) 2 and (Eu 2+ ) 3 (M 3+ )(As 3− ) 3 . They all feature [MPn 4 ] tetrahedra, which are connected in different ways. While in the Ca 5 Ga 2 As 6 and Ca 5 Al 2 Bi 6 type representatives double strands via Pn–Pn bonds are formed, in Eu 3 AlAs 3 and Eu 3 GaAs 3 , [M 2 As 6 ] 6− tetrahedral dimers exist. The divalent europium atoms are located in between the chains, providing electroneutrality. The magnetic properties of four compounds have been investigated and complex (antiferro)magnetic ordering has been observed at T N = 16.1(1) (Eu 5 In 2 As 6 ), 17.8(1) K (Eu 5 In 2 Sb 6 ), 10.0(1) K (Eu 3 AlAs 3 ) and 10.7(1) K (Eu 3 GaAs 3 ). The effective magnetic moment and 151 Eu Mössbauer spectroscopic investigations unambiguously proved the divalent character of the Eu atoms. The spectra recorded below the magnetic ordering showed a (full) hyperfine field splitting. Additionally, 121 Sb Mössbauer spectroscopic studies have been conducted on the antimonide Eu 5 In 2 Sb 6 . Finally, computational studies of Eu 3 AlAs 3 and Eu 5 In 2 Sb 6 indicate semiconducting behavior for the arsenide with a bandgap of ca. 1 eV, while an increased metallicity, manifested in a pseudo gap for the antimonide, is visible at the Fermi level.
doi_str_mv 10.1039/C9QM00703B
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9QM00703B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C9QM00703B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76B-4d0ba3b5695978583c67cf64566af69278a0b546d4aaae57530c2d5a09f01f803</originalsourceid><addsrcrecordid>eNpNUM1Kw0AQXkTBUnvxCeaoYnQ2m91NEA9tqLXQUoWevITpZkMj6bZko-BFfAff0CcxsYJe5pvvh4H5GDvleMVRJNdp8jhH1ChGB6wXogwDLoU-_Lcfs4H3z4jItQ4F8h57Xzho1hby8pUq6xowa6rJNLaGbfHjjF-Amu3GQ7lPtpaj-g2eStdUsFuTt74LSZg6COHBgQJyeScJmA99O89a8RaG_uvjc1TewLwj1SVM6PyEHRVUeTv4xT5b3o2X6X0wW0ym6XAWGK1GQZTjisRKqkQmOpaxMEqbQkVSKSpUEuqYcCUjlUdEZKWWAk2YS8KkQF7EKPrsYn_W1Fvva1tku7rctF9kHLOuu-yvO_ENCWJcGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the divalent character of the Eu atoms in the ternary Zintl phases Eu 5 In 2 Pn 6 and Eu 3 MAs 3 (Pn = As–Bi; M = Al, Ga)</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Radzieowski, Mathis ; Stegemann, Frank ; Klenner, Steffen ; Zhang, Yuemei ; Fokwa, Boniface P. T. ; Janka, Oliver</creator><creatorcontrib>Radzieowski, Mathis ; Stegemann, Frank ; Klenner, Steffen ; Zhang, Yuemei ; Fokwa, Boniface P. T. ; Janka, Oliver</creatorcontrib><description>Five Zintl phases in the ternary system Eu–M–Pn (M = Al, In; Pn = As, Sb, Bi) were prepared from the elements in tantalum containers. Eu 5 In 2 As 6 and Eu 5 In 2 Sb 6 crystallize in the orthorhombic Ca 5 Ga 2 As 6 type structure ( Pbam , oP 26), while Eu 5 In 2 Bi 6 is isostructural to orthorhombic Ca 5 Al 2 Bi 6 ( Pbam , oP 26). Eu 3 AlAs 3 adopts a monoclinic structure type ( P 2 1 / c , mP 28), which is isopointal to Rb 3 TlO 3 , and Eu 3 GaAs 3 ( Cmce , oS 56), finally, crystallizes in the orthorhombic Ba 3 AlSb 3 type structure. All structures have been refined from single crystal X-ray diffraction experiments and can be considered to be Zintl phases with a valence precise sum formula according to (Eu 2+ ) 5 (In 3+ ) 2 (Pn 3− ) 4 (Pn 2− ) 2 and (Eu 2+ ) 3 (M 3+ )(As 3− ) 3 . They all feature [MPn 4 ] tetrahedra, which are connected in different ways. While in the Ca 5 Ga 2 As 6 and Ca 5 Al 2 Bi 6 type representatives double strands via Pn–Pn bonds are formed, in Eu 3 AlAs 3 and Eu 3 GaAs 3 , [M 2 As 6 ] 6− tetrahedral dimers exist. The divalent europium atoms are located in between the chains, providing electroneutrality. The magnetic properties of four compounds have been investigated and complex (antiferro)magnetic ordering has been observed at T N = 16.1(1) (Eu 5 In 2 As 6 ), 17.8(1) K (Eu 5 In 2 Sb 6 ), 10.0(1) K (Eu 3 AlAs 3 ) and 10.7(1) K (Eu 3 GaAs 3 ). The effective magnetic moment and 151 Eu Mössbauer spectroscopic investigations unambiguously proved the divalent character of the Eu atoms. The spectra recorded below the magnetic ordering showed a (full) hyperfine field splitting. Additionally, 121 Sb Mössbauer spectroscopic studies have been conducted on the antimonide Eu 5 In 2 Sb 6 . Finally, computational studies of Eu 3 AlAs 3 and Eu 5 In 2 Sb 6 indicate semiconducting behavior for the arsenide with a bandgap of ca. 1 eV, while an increased metallicity, manifested in a pseudo gap for the antimonide, is visible at the Fermi level.</description><identifier>ISSN: 2052-1537</identifier><identifier>EISSN: 2052-1537</identifier><identifier>DOI: 10.1039/C9QM00703B</identifier><language>eng</language><ispartof>Materials chemistry frontiers, 2020-04, Vol.4 (4), p.1231-1248</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76B-4d0ba3b5695978583c67cf64566af69278a0b546d4aaae57530c2d5a09f01f803</citedby><cites>FETCH-LOGICAL-c76B-4d0ba3b5695978583c67cf64566af69278a0b546d4aaae57530c2d5a09f01f803</cites><orcidid>0000-0001-9802-7815 ; 0000-0002-9480-3888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Radzieowski, Mathis</creatorcontrib><creatorcontrib>Stegemann, Frank</creatorcontrib><creatorcontrib>Klenner, Steffen</creatorcontrib><creatorcontrib>Zhang, Yuemei</creatorcontrib><creatorcontrib>Fokwa, Boniface P. T.</creatorcontrib><creatorcontrib>Janka, Oliver</creatorcontrib><title>On the divalent character of the Eu atoms in the ternary Zintl phases Eu 5 In 2 Pn 6 and Eu 3 MAs 3 (Pn = As–Bi; M = Al, Ga)</title><title>Materials chemistry frontiers</title><description>Five Zintl phases in the ternary system Eu–M–Pn (M = Al, In; Pn = As, Sb, Bi) were prepared from the elements in tantalum containers. Eu 5 In 2 As 6 and Eu 5 In 2 Sb 6 crystallize in the orthorhombic Ca 5 Ga 2 As 6 type structure ( Pbam , oP 26), while Eu 5 In 2 Bi 6 is isostructural to orthorhombic Ca 5 Al 2 Bi 6 ( Pbam , oP 26). Eu 3 AlAs 3 adopts a monoclinic structure type ( P 2 1 / c , mP 28), which is isopointal to Rb 3 TlO 3 , and Eu 3 GaAs 3 ( Cmce , oS 56), finally, crystallizes in the orthorhombic Ba 3 AlSb 3 type structure. All structures have been refined from single crystal X-ray diffraction experiments and can be considered to be Zintl phases with a valence precise sum formula according to (Eu 2+ ) 5 (In 3+ ) 2 (Pn 3− ) 4 (Pn 2− ) 2 and (Eu 2+ ) 3 (M 3+ )(As 3− ) 3 . They all feature [MPn 4 ] tetrahedra, which are connected in different ways. While in the Ca 5 Ga 2 As 6 and Ca 5 Al 2 Bi 6 type representatives double strands via Pn–Pn bonds are formed, in Eu 3 AlAs 3 and Eu 3 GaAs 3 , [M 2 As 6 ] 6− tetrahedral dimers exist. The divalent europium atoms are located in between the chains, providing electroneutrality. The magnetic properties of four compounds have been investigated and complex (antiferro)magnetic ordering has been observed at T N = 16.1(1) (Eu 5 In 2 As 6 ), 17.8(1) K (Eu 5 In 2 Sb 6 ), 10.0(1) K (Eu 3 AlAs 3 ) and 10.7(1) K (Eu 3 GaAs 3 ). The effective magnetic moment and 151 Eu Mössbauer spectroscopic investigations unambiguously proved the divalent character of the Eu atoms. The spectra recorded below the magnetic ordering showed a (full) hyperfine field splitting. Additionally, 121 Sb Mössbauer spectroscopic studies have been conducted on the antimonide Eu 5 In 2 Sb 6 . Finally, computational studies of Eu 3 AlAs 3 and Eu 5 In 2 Sb 6 indicate semiconducting behavior for the arsenide with a bandgap of ca. 1 eV, while an increased metallicity, manifested in a pseudo gap for the antimonide, is visible at the Fermi level.</description><issn>2052-1537</issn><issn>2052-1537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNUM1Kw0AQXkTBUnvxCeaoYnQ2m91NEA9tqLXQUoWevITpZkMj6bZko-BFfAff0CcxsYJe5pvvh4H5GDvleMVRJNdp8jhH1ChGB6wXogwDLoU-_Lcfs4H3z4jItQ4F8h57Xzho1hby8pUq6xowa6rJNLaGbfHjjF-Amu3GQ7lPtpaj-g2eStdUsFuTt74LSZg6COHBgQJyeScJmA99O89a8RaG_uvjc1TewLwj1SVM6PyEHRVUeTv4xT5b3o2X6X0wW0ym6XAWGK1GQZTjisRKqkQmOpaxMEqbQkVSKSpUEuqYcCUjlUdEZKWWAk2YS8KkQF7EKPrsYn_W1Fvva1tku7rctF9kHLOuu-yvO_ENCWJcGQ</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Radzieowski, Mathis</creator><creator>Stegemann, Frank</creator><creator>Klenner, Steffen</creator><creator>Zhang, Yuemei</creator><creator>Fokwa, Boniface P. T.</creator><creator>Janka, Oliver</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9802-7815</orcidid><orcidid>https://orcid.org/0000-0002-9480-3888</orcidid></search><sort><creationdate>20200402</creationdate><title>On the divalent character of the Eu atoms in the ternary Zintl phases Eu 5 In 2 Pn 6 and Eu 3 MAs 3 (Pn = As–Bi; M = Al, Ga)</title><author>Radzieowski, Mathis ; Stegemann, Frank ; Klenner, Steffen ; Zhang, Yuemei ; Fokwa, Boniface P. T. ; Janka, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76B-4d0ba3b5695978583c67cf64566af69278a0b546d4aaae57530c2d5a09f01f803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radzieowski, Mathis</creatorcontrib><creatorcontrib>Stegemann, Frank</creatorcontrib><creatorcontrib>Klenner, Steffen</creatorcontrib><creatorcontrib>Zhang, Yuemei</creatorcontrib><creatorcontrib>Fokwa, Boniface P. T.</creatorcontrib><creatorcontrib>Janka, Oliver</creatorcontrib><collection>CrossRef</collection><jtitle>Materials chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radzieowski, Mathis</au><au>Stegemann, Frank</au><au>Klenner, Steffen</au><au>Zhang, Yuemei</au><au>Fokwa, Boniface P. T.</au><au>Janka, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the divalent character of the Eu atoms in the ternary Zintl phases Eu 5 In 2 Pn 6 and Eu 3 MAs 3 (Pn = As–Bi; M = Al, Ga)</atitle><jtitle>Materials chemistry frontiers</jtitle><date>2020-04-02</date><risdate>2020</risdate><volume>4</volume><issue>4</issue><spage>1231</spage><epage>1248</epage><pages>1231-1248</pages><issn>2052-1537</issn><eissn>2052-1537</eissn><abstract>Five Zintl phases in the ternary system Eu–M–Pn (M = Al, In; Pn = As, Sb, Bi) were prepared from the elements in tantalum containers. Eu 5 In 2 As 6 and Eu 5 In 2 Sb 6 crystallize in the orthorhombic Ca 5 Ga 2 As 6 type structure ( Pbam , oP 26), while Eu 5 In 2 Bi 6 is isostructural to orthorhombic Ca 5 Al 2 Bi 6 ( Pbam , oP 26). Eu 3 AlAs 3 adopts a monoclinic structure type ( P 2 1 / c , mP 28), which is isopointal to Rb 3 TlO 3 , and Eu 3 GaAs 3 ( Cmce , oS 56), finally, crystallizes in the orthorhombic Ba 3 AlSb 3 type structure. All structures have been refined from single crystal X-ray diffraction experiments and can be considered to be Zintl phases with a valence precise sum formula according to (Eu 2+ ) 5 (In 3+ ) 2 (Pn 3− ) 4 (Pn 2− ) 2 and (Eu 2+ ) 3 (M 3+ )(As 3− ) 3 . They all feature [MPn 4 ] tetrahedra, which are connected in different ways. While in the Ca 5 Ga 2 As 6 and Ca 5 Al 2 Bi 6 type representatives double strands via Pn–Pn bonds are formed, in Eu 3 AlAs 3 and Eu 3 GaAs 3 , [M 2 As 6 ] 6− tetrahedral dimers exist. The divalent europium atoms are located in between the chains, providing electroneutrality. The magnetic properties of four compounds have been investigated and complex (antiferro)magnetic ordering has been observed at T N = 16.1(1) (Eu 5 In 2 As 6 ), 17.8(1) K (Eu 5 In 2 Sb 6 ), 10.0(1) K (Eu 3 AlAs 3 ) and 10.7(1) K (Eu 3 GaAs 3 ). The effective magnetic moment and 151 Eu Mössbauer spectroscopic investigations unambiguously proved the divalent character of the Eu atoms. The spectra recorded below the magnetic ordering showed a (full) hyperfine field splitting. Additionally, 121 Sb Mössbauer spectroscopic studies have been conducted on the antimonide Eu 5 In 2 Sb 6 . Finally, computational studies of Eu 3 AlAs 3 and Eu 5 In 2 Sb 6 indicate semiconducting behavior for the arsenide with a bandgap of ca. 1 eV, while an increased metallicity, manifested in a pseudo gap for the antimonide, is visible at the Fermi level.</abstract><doi>10.1039/C9QM00703B</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9802-7815</orcidid><orcidid>https://orcid.org/0000-0002-9480-3888</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-1537
ispartof Materials chemistry frontiers, 2020-04, Vol.4 (4), p.1231-1248
issn 2052-1537
2052-1537
language eng
recordid cdi_crossref_primary_10_1039_C9QM00703B
source Royal Society Of Chemistry Journals 2008-
title On the divalent character of the Eu atoms in the ternary Zintl phases Eu 5 In 2 Pn 6 and Eu 3 MAs 3 (Pn = As–Bi; M = Al, Ga)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20divalent%20character%20of%20the%20Eu%20atoms%20in%20the%20ternary%20Zintl%20phases%20Eu%205%20In%202%20Pn%206%20and%20Eu%203%20MAs%203%20(Pn%20=%20As%E2%80%93Bi;%20M%20=%20Al,%20Ga)&rft.jtitle=Materials%20chemistry%20frontiers&rft.au=Radzieowski,%20Mathis&rft.date=2020-04-02&rft.volume=4&rft.issue=4&rft.spage=1231&rft.epage=1248&rft.pages=1231-1248&rft.issn=2052-1537&rft.eissn=2052-1537&rft_id=info:doi/10.1039/C9QM00703B&rft_dat=%3Ccrossref%3E10_1039_C9QM00703B%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true