Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures

The high reactivity of silver nanoparticles leads to their broad applications in the anti-bacterial field; however, the safety of silver nanoparticles has attracted increasing public attention. After exposure to silver nanoparticles in vivo , the liver serves as their potential deposition site; howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-03, Vol.12 (11), p.6429-6437
Hauptverfasser: Li, Haiyun, Chen, Jiaqi, Fan, Huizhen, Cai, Rui, Gao, Xinshuang, Meng, Dejing, Ji, Yinglu, Chen, Chunying, Wang, Liming, Wu, Xiaochun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6437
container_issue 11
container_start_page 6429
container_title Nanoscale
container_volume 12
creator Li, Haiyun
Chen, Jiaqi
Fan, Huizhen
Cai, Rui
Gao, Xinshuang
Meng, Dejing
Ji, Yinglu
Chen, Chunying
Wang, Liming
Wu, Xiaochun
description The high reactivity of silver nanoparticles leads to their broad applications in the anti-bacterial field; however, the safety of silver nanoparticles has attracted increasing public attention. After exposure to silver nanoparticles in vivo , the liver serves as their potential deposition site; however the potential biological effects of such nanoparticles on hepatocytes at low dosages are not well understood. Here, we study the interaction between gold nanorod core/silver shell nanostructures (Au@Ag NRs) and human hepatocytes, HepG2 cells, and determine that Au@Ag NRs at sub-lethal doses can induce autophagy. After uptake, Au@Ag NRs mainly localize in the lysosomes where they release silver ions and promote the production of reactive oxygen species (ROS). The ROS then suppress the AKT-mTOR signaling pathway and activate autophagy. In addition, oxidative stress results in lysosomal impairment, causing decreased ability for lysosomal digestion. Moreover, oxidative stress also affects the structure and function of mitochondria, leading to the initiation of protective autophagy to eliminate the damaged mitochondrion. Our study shows that at sub-lethal dosages, silver nanomaterials may alter the physiological functions of hepatic cells by activating protective autophagy and cause potential health risks, indicating that cautious consideration of the safety of nanomaterials for certain applications is necessary. At sub-lethal doses, Au@Ag NRs induce oxidative stress that activates the protective autophagy of human hepatocytes.
doi_str_mv 10.1039/c9nr08621h
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9NR08621H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378745569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-38c75030e1e7f2ed694c0eb59782533932298a7f33755ad8f2e84b40494c53273</originalsourceid><addsrcrecordid>eNqNkc1P3DAQxa2qVYFtL72DjLi12q4_E-eIIugiISpVcI4cZ8IaBTu1nUX739fs0uWGOM1I83szem8Q-kbJT0p4tTCVC0QVjK4-oENGBJlzXrKP-74QB-goxgdCiooX_DM64IwKKiQ5RO2Vs8nqZL3Dvsdj8AlMsmvAekp-XOn7DbYOr2DUyZtNgojbDb73Q4eddj74DhsfYBHtsIaA4wqGYTuJKUwmTQHiF_Sp10OEry91hu4uL27r5fz696-r-vx6bgQRac6VKSXhBCiUPYOuqIQh0MqqVExyXnHGKqXLPnuTUncqM0q0WZo5yVnJZ-hstzeb-DtBTM2Dn4LLJxvGS1UKKbP_Gfq-o0zwMQbomzHYRx02DSXNc5xNXd382ca5zPDJy8qpfYRuj_7PLwM_dsATtL6PxoIzsMcIIZIxyoTKHX2-rd5P1zZt31L7yaUsPd1JQzR7xevjm7HrM3P8FsP_AW2Dpks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378745569</pqid></control><display><type>article</type><title>Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><creator>Li, Haiyun ; Chen, Jiaqi ; Fan, Huizhen ; Cai, Rui ; Gao, Xinshuang ; Meng, Dejing ; Ji, Yinglu ; Chen, Chunying ; Wang, Liming ; Wu, Xiaochun</creator><creatorcontrib>Li, Haiyun ; Chen, Jiaqi ; Fan, Huizhen ; Cai, Rui ; Gao, Xinshuang ; Meng, Dejing ; Ji, Yinglu ; Chen, Chunying ; Wang, Liming ; Wu, Xiaochun</creatorcontrib><description>The high reactivity of silver nanoparticles leads to their broad applications in the anti-bacterial field; however, the safety of silver nanoparticles has attracted increasing public attention. After exposure to silver nanoparticles in vivo , the liver serves as their potential deposition site; however the potential biological effects of such nanoparticles on hepatocytes at low dosages are not well understood. Here, we study the interaction between gold nanorod core/silver shell nanostructures (Au@Ag NRs) and human hepatocytes, HepG2 cells, and determine that Au@Ag NRs at sub-lethal doses can induce autophagy. After uptake, Au@Ag NRs mainly localize in the lysosomes where they release silver ions and promote the production of reactive oxygen species (ROS). The ROS then suppress the AKT-mTOR signaling pathway and activate autophagy. In addition, oxidative stress results in lysosomal impairment, causing decreased ability for lysosomal digestion. Moreover, oxidative stress also affects the structure and function of mitochondria, leading to the initiation of protective autophagy to eliminate the damaged mitochondrion. Our study shows that at sub-lethal dosages, silver nanomaterials may alter the physiological functions of hepatic cells by activating protective autophagy and cause potential health risks, indicating that cautious consideration of the safety of nanomaterials for certain applications is necessary. At sub-lethal doses, Au@Ag NRs induce oxidative stress that activates the protective autophagy of human hepatocytes.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr08621h</identifier><identifier>PMID: 32141450</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Antiinfectives and antibacterials ; Autophagy ; Autophagy - drug effects ; Biological effects ; Chemistry ; Chemistry, Multidisciplinary ; Gold ; Gold - chemistry ; Gold - pharmacokinetics ; Gold - pharmacology ; Hep G2 Cells ; Hepatocytes - metabolism ; Humans ; Lysosomes ; Materials Science ; Materials Science, Multidisciplinary ; Mitochondria ; Mitochondria, Liver - metabolism ; Nanomaterials ; Nanoparticles ; Nanorods ; Nanoscience &amp; Nanotechnology ; Nanoshells - chemistry ; Nanostructure ; Nanotubes - chemistry ; Oxidative stress ; Oxidative Stress - drug effects ; Physical Sciences ; Physics ; Physics, Applied ; Reactive Oxygen Species - metabolism ; Safety ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Silver ; Silver - chemistry ; Silver - pharmacokinetics ; Silver - pharmacology ; Technology</subject><ispartof>Nanoscale, 2020-03, Vol.12 (11), p.6429-6437</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000522124800019</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c404t-38c75030e1e7f2ed694c0eb59782533932298a7f33755ad8f2e84b40494c53273</citedby><cites>FETCH-LOGICAL-c404t-38c75030e1e7f2ed694c0eb59782533932298a7f33755ad8f2e84b40494c53273</cites><orcidid>0000-0003-1382-9195 ; 0000-0002-6027-0315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32141450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Haiyun</creatorcontrib><creatorcontrib>Chen, Jiaqi</creatorcontrib><creatorcontrib>Fan, Huizhen</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Gao, Xinshuang</creatorcontrib><creatorcontrib>Meng, Dejing</creatorcontrib><creatorcontrib>Ji, Yinglu</creatorcontrib><creatorcontrib>Chen, Chunying</creatorcontrib><creatorcontrib>Wang, Liming</creatorcontrib><creatorcontrib>Wu, Xiaochun</creatorcontrib><title>Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures</title><title>Nanoscale</title><addtitle>NANOSCALE</addtitle><addtitle>Nanoscale</addtitle><description>The high reactivity of silver nanoparticles leads to their broad applications in the anti-bacterial field; however, the safety of silver nanoparticles has attracted increasing public attention. After exposure to silver nanoparticles in vivo , the liver serves as their potential deposition site; however the potential biological effects of such nanoparticles on hepatocytes at low dosages are not well understood. Here, we study the interaction between gold nanorod core/silver shell nanostructures (Au@Ag NRs) and human hepatocytes, HepG2 cells, and determine that Au@Ag NRs at sub-lethal doses can induce autophagy. After uptake, Au@Ag NRs mainly localize in the lysosomes where they release silver ions and promote the production of reactive oxygen species (ROS). The ROS then suppress the AKT-mTOR signaling pathway and activate autophagy. In addition, oxidative stress results in lysosomal impairment, causing decreased ability for lysosomal digestion. Moreover, oxidative stress also affects the structure and function of mitochondria, leading to the initiation of protective autophagy to eliminate the damaged mitochondrion. Our study shows that at sub-lethal dosages, silver nanomaterials may alter the physiological functions of hepatic cells by activating protective autophagy and cause potential health risks, indicating that cautious consideration of the safety of nanomaterials for certain applications is necessary. At sub-lethal doses, Au@Ag NRs induce oxidative stress that activates the protective autophagy of human hepatocytes.</description><subject>Antiinfectives and antibacterials</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Biological effects</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Gold - pharmacokinetics</subject><subject>Gold - pharmacology</subject><subject>Hep G2 Cells</subject><subject>Hepatocytes - metabolism</subject><subject>Humans</subject><subject>Lysosomes</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mitochondria</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanoshells - chemistry</subject><subject>Nanostructure</subject><subject>Nanotubes - chemistry</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Safety</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>Silver - pharmacokinetics</subject><subject>Silver - pharmacology</subject><subject>Technology</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1P3DAQxa2qVYFtL72DjLi12q4_E-eIIugiISpVcI4cZ8IaBTu1nUX739fs0uWGOM1I83szem8Q-kbJT0p4tTCVC0QVjK4-oENGBJlzXrKP-74QB-goxgdCiooX_DM64IwKKiQ5RO2Vs8nqZL3Dvsdj8AlMsmvAekp-XOn7DbYOr2DUyZtNgojbDb73Q4eddj74DhsfYBHtsIaA4wqGYTuJKUwmTQHiF_Sp10OEry91hu4uL27r5fz696-r-vx6bgQRac6VKSXhBCiUPYOuqIQh0MqqVExyXnHGKqXLPnuTUncqM0q0WZo5yVnJZ-hstzeb-DtBTM2Dn4LLJxvGS1UKKbP_Gfq-o0zwMQbomzHYRx02DSXNc5xNXd382ca5zPDJy8qpfYRuj_7PLwM_dsATtL6PxoIzsMcIIZIxyoTKHX2-rd5P1zZt31L7yaUsPd1JQzR7xevjm7HrM3P8FsP_AW2Dpks</recordid><startdate>20200321</startdate><enddate>20200321</enddate><creator>Li, Haiyun</creator><creator>Chen, Jiaqi</creator><creator>Fan, Huizhen</creator><creator>Cai, Rui</creator><creator>Gao, Xinshuang</creator><creator>Meng, Dejing</creator><creator>Ji, Yinglu</creator><creator>Chen, Chunying</creator><creator>Wang, Liming</creator><creator>Wu, Xiaochun</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1382-9195</orcidid><orcidid>https://orcid.org/0000-0002-6027-0315</orcidid></search><sort><creationdate>20200321</creationdate><title>Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures</title><author>Li, Haiyun ; Chen, Jiaqi ; Fan, Huizhen ; Cai, Rui ; Gao, Xinshuang ; Meng, Dejing ; Ji, Yinglu ; Chen, Chunying ; Wang, Liming ; Wu, Xiaochun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-38c75030e1e7f2ed694c0eb59782533932298a7f33755ad8f2e84b40494c53273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Biological effects</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Gold - pharmacokinetics</topic><topic>Gold - pharmacology</topic><topic>Hep G2 Cells</topic><topic>Hepatocytes - metabolism</topic><topic>Humans</topic><topic>Lysosomes</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mitochondria</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanoshells - chemistry</topic><topic>Nanostructure</topic><topic>Nanotubes - chemistry</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Safety</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>Silver - pharmacokinetics</topic><topic>Silver - pharmacology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haiyun</creatorcontrib><creatorcontrib>Chen, Jiaqi</creatorcontrib><creatorcontrib>Fan, Huizhen</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Gao, Xinshuang</creatorcontrib><creatorcontrib>Meng, Dejing</creatorcontrib><creatorcontrib>Ji, Yinglu</creatorcontrib><creatorcontrib>Chen, Chunying</creatorcontrib><creatorcontrib>Wang, Liming</creatorcontrib><creatorcontrib>Wu, Xiaochun</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haiyun</au><au>Chen, Jiaqi</au><au>Fan, Huizhen</au><au>Cai, Rui</au><au>Gao, Xinshuang</au><au>Meng, Dejing</au><au>Ji, Yinglu</au><au>Chen, Chunying</au><au>Wang, Liming</au><au>Wu, Xiaochun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures</atitle><jtitle>Nanoscale</jtitle><stitle>NANOSCALE</stitle><addtitle>Nanoscale</addtitle><date>2020-03-21</date><risdate>2020</risdate><volume>12</volume><issue>11</issue><spage>6429</spage><epage>6437</epage><pages>6429-6437</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The high reactivity of silver nanoparticles leads to their broad applications in the anti-bacterial field; however, the safety of silver nanoparticles has attracted increasing public attention. After exposure to silver nanoparticles in vivo , the liver serves as their potential deposition site; however the potential biological effects of such nanoparticles on hepatocytes at low dosages are not well understood. Here, we study the interaction between gold nanorod core/silver shell nanostructures (Au@Ag NRs) and human hepatocytes, HepG2 cells, and determine that Au@Ag NRs at sub-lethal doses can induce autophagy. After uptake, Au@Ag NRs mainly localize in the lysosomes where they release silver ions and promote the production of reactive oxygen species (ROS). The ROS then suppress the AKT-mTOR signaling pathway and activate autophagy. In addition, oxidative stress results in lysosomal impairment, causing decreased ability for lysosomal digestion. Moreover, oxidative stress also affects the structure and function of mitochondria, leading to the initiation of protective autophagy to eliminate the damaged mitochondrion. Our study shows that at sub-lethal dosages, silver nanomaterials may alter the physiological functions of hepatic cells by activating protective autophagy and cause potential health risks, indicating that cautious consideration of the safety of nanomaterials for certain applications is necessary. At sub-lethal doses, Au@Ag NRs induce oxidative stress that activates the protective autophagy of human hepatocytes.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>32141450</pmid><doi>10.1039/c9nr08621h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1382-9195</orcidid><orcidid>https://orcid.org/0000-0002-6027-0315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-03, Vol.12 (11), p.6429-6437
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_C9NR08621H
source MEDLINE; Royal Society Of Chemistry Journals
subjects Antiinfectives and antibacterials
Autophagy
Autophagy - drug effects
Biological effects
Chemistry
Chemistry, Multidisciplinary
Gold
Gold - chemistry
Gold - pharmacokinetics
Gold - pharmacology
Hep G2 Cells
Hepatocytes - metabolism
Humans
Lysosomes
Materials Science
Materials Science, Multidisciplinary
Mitochondria
Mitochondria, Liver - metabolism
Nanomaterials
Nanoparticles
Nanorods
Nanoscience & Nanotechnology
Nanoshells - chemistry
Nanostructure
Nanotubes - chemistry
Oxidative stress
Oxidative Stress - drug effects
Physical Sciences
Physics
Physics, Applied
Reactive Oxygen Species - metabolism
Safety
Science & Technology
Science & Technology - Other Topics
Silver
Silver - chemistry
Silver - pharmacokinetics
Silver - pharmacology
Technology
title Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initiation%20of%20protective%20autophagy%20in%20hepatocytes%20by%20gold%20nanorod%20core/silver%20shell%20nanostructures&rft.jtitle=Nanoscale&rft.au=Li,%20Haiyun&rft.date=2020-03-21&rft.volume=12&rft.issue=11&rft.spage=6429&rft.epage=6437&rft.pages=6429-6437&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr08621h&rft_dat=%3Cproquest_webof%3E2378745569%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378745569&rft_id=info:pmid/32141450&rfr_iscdi=true