Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures
The high reactivity of silver nanoparticles leads to their broad applications in the anti-bacterial field; however, the safety of silver nanoparticles has attracted increasing public attention. After exposure to silver nanoparticles in vivo , the liver serves as their potential deposition site; howe...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2020-03, Vol.12 (11), p.6429-6437 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6437 |
---|---|
container_issue | 11 |
container_start_page | 6429 |
container_title | Nanoscale |
container_volume | 12 |
creator | Li, Haiyun Chen, Jiaqi Fan, Huizhen Cai, Rui Gao, Xinshuang Meng, Dejing Ji, Yinglu Chen, Chunying Wang, Liming Wu, Xiaochun |
description | The high reactivity of silver nanoparticles leads to their broad applications in the anti-bacterial field; however, the safety of silver nanoparticles has attracted increasing public attention. After exposure to silver nanoparticles
in vivo
, the liver serves as their potential deposition site; however the potential biological effects of such nanoparticles on hepatocytes at low dosages are not well understood. Here, we study the interaction between gold nanorod core/silver shell nanostructures (Au@Ag NRs) and human hepatocytes, HepG2 cells, and determine that Au@Ag NRs at sub-lethal doses can induce autophagy. After uptake, Au@Ag NRs mainly localize in the lysosomes where they release silver ions and promote the production of reactive oxygen species (ROS). The ROS then suppress the AKT-mTOR signaling pathway and activate autophagy. In addition, oxidative stress results in lysosomal impairment, causing decreased ability for lysosomal digestion. Moreover, oxidative stress also affects the structure and function of mitochondria, leading to the initiation of protective autophagy to eliminate the damaged mitochondrion. Our study shows that at sub-lethal dosages, silver nanomaterials may alter the physiological functions of hepatic cells by activating protective autophagy and cause potential health risks, indicating that cautious consideration of the safety of nanomaterials for certain applications is necessary.
At sub-lethal doses, Au@Ag NRs induce oxidative stress that activates the protective autophagy of human hepatocytes. |
doi_str_mv | 10.1039/c9nr08621h |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9NR08621H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378745569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-38c75030e1e7f2ed694c0eb59782533932298a7f33755ad8f2e84b40494c53273</originalsourceid><addsrcrecordid>eNqNkc1P3DAQxa2qVYFtL72DjLi12q4_E-eIIugiISpVcI4cZ8IaBTu1nUX739fs0uWGOM1I83szem8Q-kbJT0p4tTCVC0QVjK4-oENGBJlzXrKP-74QB-goxgdCiooX_DM64IwKKiQ5RO2Vs8nqZL3Dvsdj8AlMsmvAekp-XOn7DbYOr2DUyZtNgojbDb73Q4eddj74DhsfYBHtsIaA4wqGYTuJKUwmTQHiF_Sp10OEry91hu4uL27r5fz696-r-vx6bgQRac6VKSXhBCiUPYOuqIQh0MqqVExyXnHGKqXLPnuTUncqM0q0WZo5yVnJZ-hstzeb-DtBTM2Dn4LLJxvGS1UKKbP_Gfq-o0zwMQbomzHYRx02DSXNc5xNXd382ca5zPDJy8qpfYRuj_7PLwM_dsATtL6PxoIzsMcIIZIxyoTKHX2-rd5P1zZt31L7yaUsPd1JQzR7xevjm7HrM3P8FsP_AW2Dpks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378745569</pqid></control><display><type>article</type><title>Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><creator>Li, Haiyun ; Chen, Jiaqi ; Fan, Huizhen ; Cai, Rui ; Gao, Xinshuang ; Meng, Dejing ; Ji, Yinglu ; Chen, Chunying ; Wang, Liming ; Wu, Xiaochun</creator><creatorcontrib>Li, Haiyun ; Chen, Jiaqi ; Fan, Huizhen ; Cai, Rui ; Gao, Xinshuang ; Meng, Dejing ; Ji, Yinglu ; Chen, Chunying ; Wang, Liming ; Wu, Xiaochun</creatorcontrib><description>The high reactivity of silver nanoparticles leads to their broad applications in the anti-bacterial field; however, the safety of silver nanoparticles has attracted increasing public attention. After exposure to silver nanoparticles
in vivo
, the liver serves as their potential deposition site; however the potential biological effects of such nanoparticles on hepatocytes at low dosages are not well understood. Here, we study the interaction between gold nanorod core/silver shell nanostructures (Au@Ag NRs) and human hepatocytes, HepG2 cells, and determine that Au@Ag NRs at sub-lethal doses can induce autophagy. After uptake, Au@Ag NRs mainly localize in the lysosomes where they release silver ions and promote the production of reactive oxygen species (ROS). The ROS then suppress the AKT-mTOR signaling pathway and activate autophagy. In addition, oxidative stress results in lysosomal impairment, causing decreased ability for lysosomal digestion. Moreover, oxidative stress also affects the structure and function of mitochondria, leading to the initiation of protective autophagy to eliminate the damaged mitochondrion. Our study shows that at sub-lethal dosages, silver nanomaterials may alter the physiological functions of hepatic cells by activating protective autophagy and cause potential health risks, indicating that cautious consideration of the safety of nanomaterials for certain applications is necessary.
At sub-lethal doses, Au@Ag NRs induce oxidative stress that activates the protective autophagy of human hepatocytes.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr08621h</identifier><identifier>PMID: 32141450</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Antiinfectives and antibacterials ; Autophagy ; Autophagy - drug effects ; Biological effects ; Chemistry ; Chemistry, Multidisciplinary ; Gold ; Gold - chemistry ; Gold - pharmacokinetics ; Gold - pharmacology ; Hep G2 Cells ; Hepatocytes - metabolism ; Humans ; Lysosomes ; Materials Science ; Materials Science, Multidisciplinary ; Mitochondria ; Mitochondria, Liver - metabolism ; Nanomaterials ; Nanoparticles ; Nanorods ; Nanoscience & Nanotechnology ; Nanoshells - chemistry ; Nanostructure ; Nanotubes - chemistry ; Oxidative stress ; Oxidative Stress - drug effects ; Physical Sciences ; Physics ; Physics, Applied ; Reactive Oxygen Species - metabolism ; Safety ; Science & Technology ; Science & Technology - Other Topics ; Silver ; Silver - chemistry ; Silver - pharmacokinetics ; Silver - pharmacology ; Technology</subject><ispartof>Nanoscale, 2020-03, Vol.12 (11), p.6429-6437</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000522124800019</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c404t-38c75030e1e7f2ed694c0eb59782533932298a7f33755ad8f2e84b40494c53273</citedby><cites>FETCH-LOGICAL-c404t-38c75030e1e7f2ed694c0eb59782533932298a7f33755ad8f2e84b40494c53273</cites><orcidid>0000-0003-1382-9195 ; 0000-0002-6027-0315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32141450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Haiyun</creatorcontrib><creatorcontrib>Chen, Jiaqi</creatorcontrib><creatorcontrib>Fan, Huizhen</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Gao, Xinshuang</creatorcontrib><creatorcontrib>Meng, Dejing</creatorcontrib><creatorcontrib>Ji, Yinglu</creatorcontrib><creatorcontrib>Chen, Chunying</creatorcontrib><creatorcontrib>Wang, Liming</creatorcontrib><creatorcontrib>Wu, Xiaochun</creatorcontrib><title>Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures</title><title>Nanoscale</title><addtitle>NANOSCALE</addtitle><addtitle>Nanoscale</addtitle><description>The high reactivity of silver nanoparticles leads to their broad applications in the anti-bacterial field; however, the safety of silver nanoparticles has attracted increasing public attention. After exposure to silver nanoparticles
in vivo
, the liver serves as their potential deposition site; however the potential biological effects of such nanoparticles on hepatocytes at low dosages are not well understood. Here, we study the interaction between gold nanorod core/silver shell nanostructures (Au@Ag NRs) and human hepatocytes, HepG2 cells, and determine that Au@Ag NRs at sub-lethal doses can induce autophagy. After uptake, Au@Ag NRs mainly localize in the lysosomes where they release silver ions and promote the production of reactive oxygen species (ROS). The ROS then suppress the AKT-mTOR signaling pathway and activate autophagy. In addition, oxidative stress results in lysosomal impairment, causing decreased ability for lysosomal digestion. Moreover, oxidative stress also affects the structure and function of mitochondria, leading to the initiation of protective autophagy to eliminate the damaged mitochondrion. Our study shows that at sub-lethal dosages, silver nanomaterials may alter the physiological functions of hepatic cells by activating protective autophagy and cause potential health risks, indicating that cautious consideration of the safety of nanomaterials for certain applications is necessary.
At sub-lethal doses, Au@Ag NRs induce oxidative stress that activates the protective autophagy of human hepatocytes.</description><subject>Antiinfectives and antibacterials</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Biological effects</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Gold - pharmacokinetics</subject><subject>Gold - pharmacology</subject><subject>Hep G2 Cells</subject><subject>Hepatocytes - metabolism</subject><subject>Humans</subject><subject>Lysosomes</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mitochondria</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanoscience & Nanotechnology</subject><subject>Nanoshells - chemistry</subject><subject>Nanostructure</subject><subject>Nanotubes - chemistry</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Safety</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>Silver - pharmacokinetics</subject><subject>Silver - pharmacology</subject><subject>Technology</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1P3DAQxa2qVYFtL72DjLi12q4_E-eIIugiISpVcI4cZ8IaBTu1nUX739fs0uWGOM1I83szem8Q-kbJT0p4tTCVC0QVjK4-oENGBJlzXrKP-74QB-goxgdCiooX_DM64IwKKiQ5RO2Vs8nqZL3Dvsdj8AlMsmvAekp-XOn7DbYOr2DUyZtNgojbDb73Q4eddj74DhsfYBHtsIaA4wqGYTuJKUwmTQHiF_Sp10OEry91hu4uL27r5fz696-r-vx6bgQRac6VKSXhBCiUPYOuqIQh0MqqVExyXnHGKqXLPnuTUncqM0q0WZo5yVnJZ-hstzeb-DtBTM2Dn4LLJxvGS1UKKbP_Gfq-o0zwMQbomzHYRx02DSXNc5xNXd382ca5zPDJy8qpfYRuj_7PLwM_dsATtL6PxoIzsMcIIZIxyoTKHX2-rd5P1zZt31L7yaUsPd1JQzR7xevjm7HrM3P8FsP_AW2Dpks</recordid><startdate>20200321</startdate><enddate>20200321</enddate><creator>Li, Haiyun</creator><creator>Chen, Jiaqi</creator><creator>Fan, Huizhen</creator><creator>Cai, Rui</creator><creator>Gao, Xinshuang</creator><creator>Meng, Dejing</creator><creator>Ji, Yinglu</creator><creator>Chen, Chunying</creator><creator>Wang, Liming</creator><creator>Wu, Xiaochun</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1382-9195</orcidid><orcidid>https://orcid.org/0000-0002-6027-0315</orcidid></search><sort><creationdate>20200321</creationdate><title>Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures</title><author>Li, Haiyun ; Chen, Jiaqi ; Fan, Huizhen ; Cai, Rui ; Gao, Xinshuang ; Meng, Dejing ; Ji, Yinglu ; Chen, Chunying ; Wang, Liming ; Wu, Xiaochun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-38c75030e1e7f2ed694c0eb59782533932298a7f33755ad8f2e84b40494c53273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Biological effects</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Gold - pharmacokinetics</topic><topic>Gold - pharmacology</topic><topic>Hep G2 Cells</topic><topic>Hepatocytes - metabolism</topic><topic>Humans</topic><topic>Lysosomes</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mitochondria</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanoscience & Nanotechnology</topic><topic>Nanoshells - chemistry</topic><topic>Nanostructure</topic><topic>Nanotubes - chemistry</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Safety</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>Silver - pharmacokinetics</topic><topic>Silver - pharmacology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haiyun</creatorcontrib><creatorcontrib>Chen, Jiaqi</creatorcontrib><creatorcontrib>Fan, Huizhen</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Gao, Xinshuang</creatorcontrib><creatorcontrib>Meng, Dejing</creatorcontrib><creatorcontrib>Ji, Yinglu</creatorcontrib><creatorcontrib>Chen, Chunying</creatorcontrib><creatorcontrib>Wang, Liming</creatorcontrib><creatorcontrib>Wu, Xiaochun</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haiyun</au><au>Chen, Jiaqi</au><au>Fan, Huizhen</au><au>Cai, Rui</au><au>Gao, Xinshuang</au><au>Meng, Dejing</au><au>Ji, Yinglu</au><au>Chen, Chunying</au><au>Wang, Liming</au><au>Wu, Xiaochun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures</atitle><jtitle>Nanoscale</jtitle><stitle>NANOSCALE</stitle><addtitle>Nanoscale</addtitle><date>2020-03-21</date><risdate>2020</risdate><volume>12</volume><issue>11</issue><spage>6429</spage><epage>6437</epage><pages>6429-6437</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The high reactivity of silver nanoparticles leads to their broad applications in the anti-bacterial field; however, the safety of silver nanoparticles has attracted increasing public attention. After exposure to silver nanoparticles
in vivo
, the liver serves as their potential deposition site; however the potential biological effects of such nanoparticles on hepatocytes at low dosages are not well understood. Here, we study the interaction between gold nanorod core/silver shell nanostructures (Au@Ag NRs) and human hepatocytes, HepG2 cells, and determine that Au@Ag NRs at sub-lethal doses can induce autophagy. After uptake, Au@Ag NRs mainly localize in the lysosomes where they release silver ions and promote the production of reactive oxygen species (ROS). The ROS then suppress the AKT-mTOR signaling pathway and activate autophagy. In addition, oxidative stress results in lysosomal impairment, causing decreased ability for lysosomal digestion. Moreover, oxidative stress also affects the structure and function of mitochondria, leading to the initiation of protective autophagy to eliminate the damaged mitochondrion. Our study shows that at sub-lethal dosages, silver nanomaterials may alter the physiological functions of hepatic cells by activating protective autophagy and cause potential health risks, indicating that cautious consideration of the safety of nanomaterials for certain applications is necessary.
At sub-lethal doses, Au@Ag NRs induce oxidative stress that activates the protective autophagy of human hepatocytes.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>32141450</pmid><doi>10.1039/c9nr08621h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1382-9195</orcidid><orcidid>https://orcid.org/0000-0002-6027-0315</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2020-03, Vol.12 (11), p.6429-6437 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9NR08621H |
source | MEDLINE; Royal Society Of Chemistry Journals |
subjects | Antiinfectives and antibacterials Autophagy Autophagy - drug effects Biological effects Chemistry Chemistry, Multidisciplinary Gold Gold - chemistry Gold - pharmacokinetics Gold - pharmacology Hep G2 Cells Hepatocytes - metabolism Humans Lysosomes Materials Science Materials Science, Multidisciplinary Mitochondria Mitochondria, Liver - metabolism Nanomaterials Nanoparticles Nanorods Nanoscience & Nanotechnology Nanoshells - chemistry Nanostructure Nanotubes - chemistry Oxidative stress Oxidative Stress - drug effects Physical Sciences Physics Physics, Applied Reactive Oxygen Species - metabolism Safety Science & Technology Science & Technology - Other Topics Silver Silver - chemistry Silver - pharmacokinetics Silver - pharmacology Technology |
title | Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initiation%20of%20protective%20autophagy%20in%20hepatocytes%20by%20gold%20nanorod%20core/silver%20shell%20nanostructures&rft.jtitle=Nanoscale&rft.au=Li,%20Haiyun&rft.date=2020-03-21&rft.volume=12&rft.issue=11&rft.spage=6429&rft.epage=6437&rft.pages=6429-6437&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr08621h&rft_dat=%3Cproquest_webof%3E2378745569%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378745569&rft_id=info:pmid/32141450&rfr_iscdi=true |