Utilization of a magnetic field-driven microscopic motion for piezoelectric energy harvesting

In spite of the recent advances in the development of high performing piezoelectric materials, their applications are typically limited to the direct conversion of mechanical impact energy to electrical energy, potentially risking mechanical failures. In this study, we developed piezoelectric poly(v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-11, Vol.11 (43), p.2527-2533
Hauptverfasser: Kim, Sanggon, Ico, Gerardo, Bai, Yaocai, Yang, Steve, Lee, Jung-Ho, Yin, Yadong, Myung, Nosang V, Nam, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2533
container_issue 43
container_start_page 2527
container_title Nanoscale
container_volume 11
creator Kim, Sanggon
Ico, Gerardo
Bai, Yaocai
Yang, Steve
Lee, Jung-Ho
Yin, Yadong
Myung, Nosang V
Nam, Jin
description In spite of the recent advances in the development of high performing piezoelectric materials, their applications are typically limited to the direct conversion of mechanical impact energy to electrical energy, potentially risking mechanical failures. In this study, we developed piezoelectric poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) nanofibers integrated with SiO 2 -shelled Fe 3 O 4 magnetic nanoparticles, to utilize magnetic energy to reliably drive the piezoelectric effect. Specifically, we show that the shape of the magnetic nanoparticles exerts a significant effect on the efficiency of the magneto-mechano-electrical energy conversion as magnetic nanorods exhibit approximately 70% enhancement in electric field generation under cyclic magnetic fields as compared to nanospheres. Under an alternating magnetic field of 200 mT, the magnetic nanorod-piezoelectric nanofiber composite generated a peak-to-peak voltage of approximately 30 mV p-p with a superior durability without any performance degradation after over 1 million cycles. This study demonstrates the potential of magnetic-field responsive, piezoelectric-based materials in energy harvesting applications from non-mechanical energy sources. Magneto-mechano-electrical energy conversion in poly(vinylidenefluoride-trifluoroethylene) piezoelectric nanofibers integrated with magnetic nanoparticles in a particle-shape dependent manner.
doi_str_mv 10.1039/c9nr04722k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9NR04722K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310667357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-7182ef17308ceb9c72946ba18fdabb065db2bd539dbc9d16338aa9cc493f90723</originalsourceid><addsrcrecordid>eNpdkd9LwzAQx4MoOKcvvgsFX0SoJrk2aR5l-AtFQdyjlDRNZmbb1KQbbH-97SYTfLqD74fv3X0PoVOCrwgGca1E43HCKf3aQyOKExwDcLq_61lyiI5CmGPMBDAYoY9pZyu7lp11TeRMJKNazhrdWRUZq6syLr1d6iaqrfIuKNf2Qu02tHE-aq1eO11p1fle0I32s1X0Kf1Sh842s2N0YGQV9MlvHaPp3e375CF-fr1_nNw8xwpS3MWcZFQbwgFnShdCcSoSVkiSmVIWBWZpWdCiTEGUhRIlYQCZlEKpRIARmFMYo4utb-vd96Kfndc2KF1VstFuEXIKBDPGIeU9ev4PnbuFb_rtBoomGVAxGF5uqeHq4LXJW29r6Vc5wfmQdD4RL2-bpJ96-GwL-6B23N8n4Adpu3vp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312483292</pqid></control><display><type>article</type><title>Utilization of a magnetic field-driven microscopic motion for piezoelectric energy harvesting</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kim, Sanggon ; Ico, Gerardo ; Bai, Yaocai ; Yang, Steve ; Lee, Jung-Ho ; Yin, Yadong ; Myung, Nosang V ; Nam, Jin</creator><creatorcontrib>Kim, Sanggon ; Ico, Gerardo ; Bai, Yaocai ; Yang, Steve ; Lee, Jung-Ho ; Yin, Yadong ; Myung, Nosang V ; Nam, Jin</creatorcontrib><description>In spite of the recent advances in the development of high performing piezoelectric materials, their applications are typically limited to the direct conversion of mechanical impact energy to electrical energy, potentially risking mechanical failures. In this study, we developed piezoelectric poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) nanofibers integrated with SiO 2 -shelled Fe 3 O 4 magnetic nanoparticles, to utilize magnetic energy to reliably drive the piezoelectric effect. Specifically, we show that the shape of the magnetic nanoparticles exerts a significant effect on the efficiency of the magneto-mechano-electrical energy conversion as magnetic nanorods exhibit approximately 70% enhancement in electric field generation under cyclic magnetic fields as compared to nanospheres. Under an alternating magnetic field of 200 mT, the magnetic nanorod-piezoelectric nanofiber composite generated a peak-to-peak voltage of approximately 30 mV p-p with a superior durability without any performance degradation after over 1 million cycles. This study demonstrates the potential of magnetic-field responsive, piezoelectric-based materials in energy harvesting applications from non-mechanical energy sources. Magneto-mechano-electrical energy conversion in poly(vinylidenefluoride-trifluoroethylene) piezoelectric nanofibers integrated with magnetic nanoparticles in a particle-shape dependent manner.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr04722k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Direct conversion ; Electric fields ; Energy ; Energy conversion efficiency ; Energy harvesting ; Iron oxides ; Magnetic fields ; Nanofibers ; Nanoparticles ; Nanorods ; Nanospheres ; Performance degradation ; Piezoelectricity ; Silicon dioxide</subject><ispartof>Nanoscale, 2019-11, Vol.11 (43), p.2527-2533</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-7182ef17308ceb9c72946ba18fdabb065db2bd539dbc9d16338aa9cc493f90723</citedby><cites>FETCH-LOGICAL-c350t-7182ef17308ceb9c72946ba18fdabb065db2bd539dbc9d16338aa9cc493f90723</cites><orcidid>0000-0001-6988-245X ; 0000-0001-5117-8958 ; 0000-0002-6731-3111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Sanggon</creatorcontrib><creatorcontrib>Ico, Gerardo</creatorcontrib><creatorcontrib>Bai, Yaocai</creatorcontrib><creatorcontrib>Yang, Steve</creatorcontrib><creatorcontrib>Lee, Jung-Ho</creatorcontrib><creatorcontrib>Yin, Yadong</creatorcontrib><creatorcontrib>Myung, Nosang V</creatorcontrib><creatorcontrib>Nam, Jin</creatorcontrib><title>Utilization of a magnetic field-driven microscopic motion for piezoelectric energy harvesting</title><title>Nanoscale</title><description>In spite of the recent advances in the development of high performing piezoelectric materials, their applications are typically limited to the direct conversion of mechanical impact energy to electrical energy, potentially risking mechanical failures. In this study, we developed piezoelectric poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) nanofibers integrated with SiO 2 -shelled Fe 3 O 4 magnetic nanoparticles, to utilize magnetic energy to reliably drive the piezoelectric effect. Specifically, we show that the shape of the magnetic nanoparticles exerts a significant effect on the efficiency of the magneto-mechano-electrical energy conversion as magnetic nanorods exhibit approximately 70% enhancement in electric field generation under cyclic magnetic fields as compared to nanospheres. Under an alternating magnetic field of 200 mT, the magnetic nanorod-piezoelectric nanofiber composite generated a peak-to-peak voltage of approximately 30 mV p-p with a superior durability without any performance degradation after over 1 million cycles. This study demonstrates the potential of magnetic-field responsive, piezoelectric-based materials in energy harvesting applications from non-mechanical energy sources. Magneto-mechano-electrical energy conversion in poly(vinylidenefluoride-trifluoroethylene) piezoelectric nanofibers integrated with magnetic nanoparticles in a particle-shape dependent manner.</description><subject>Direct conversion</subject><subject>Electric fields</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Iron oxides</subject><subject>Magnetic fields</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanospheres</subject><subject>Performance degradation</subject><subject>Piezoelectricity</subject><subject>Silicon dioxide</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkd9LwzAQx4MoOKcvvgsFX0SoJrk2aR5l-AtFQdyjlDRNZmbb1KQbbH-97SYTfLqD74fv3X0PoVOCrwgGca1E43HCKf3aQyOKExwDcLq_61lyiI5CmGPMBDAYoY9pZyu7lp11TeRMJKNazhrdWRUZq6syLr1d6iaqrfIuKNf2Qu02tHE-aq1eO11p1fle0I32s1X0Kf1Sh842s2N0YGQV9MlvHaPp3e375CF-fr1_nNw8xwpS3MWcZFQbwgFnShdCcSoSVkiSmVIWBWZpWdCiTEGUhRIlYQCZlEKpRIARmFMYo4utb-vd96Kfndc2KF1VstFuEXIKBDPGIeU9ev4PnbuFb_rtBoomGVAxGF5uqeHq4LXJW29r6Vc5wfmQdD4RL2-bpJ96-GwL-6B23N8n4Adpu3vp</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>Kim, Sanggon</creator><creator>Ico, Gerardo</creator><creator>Bai, Yaocai</creator><creator>Yang, Steve</creator><creator>Lee, Jung-Ho</creator><creator>Yin, Yadong</creator><creator>Myung, Nosang V</creator><creator>Nam, Jin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6988-245X</orcidid><orcidid>https://orcid.org/0000-0001-5117-8958</orcidid><orcidid>https://orcid.org/0000-0002-6731-3111</orcidid></search><sort><creationdate>20191121</creationdate><title>Utilization of a magnetic field-driven microscopic motion for piezoelectric energy harvesting</title><author>Kim, Sanggon ; Ico, Gerardo ; Bai, Yaocai ; Yang, Steve ; Lee, Jung-Ho ; Yin, Yadong ; Myung, Nosang V ; Nam, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-7182ef17308ceb9c72946ba18fdabb065db2bd539dbc9d16338aa9cc493f90723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Direct conversion</topic><topic>Electric fields</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Iron oxides</topic><topic>Magnetic fields</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanospheres</topic><topic>Performance degradation</topic><topic>Piezoelectricity</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sanggon</creatorcontrib><creatorcontrib>Ico, Gerardo</creatorcontrib><creatorcontrib>Bai, Yaocai</creatorcontrib><creatorcontrib>Yang, Steve</creatorcontrib><creatorcontrib>Lee, Jung-Ho</creatorcontrib><creatorcontrib>Yin, Yadong</creatorcontrib><creatorcontrib>Myung, Nosang V</creatorcontrib><creatorcontrib>Nam, Jin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sanggon</au><au>Ico, Gerardo</au><au>Bai, Yaocai</au><au>Yang, Steve</au><au>Lee, Jung-Ho</au><au>Yin, Yadong</au><au>Myung, Nosang V</au><au>Nam, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilization of a magnetic field-driven microscopic motion for piezoelectric energy harvesting</atitle><jtitle>Nanoscale</jtitle><date>2019-11-21</date><risdate>2019</risdate><volume>11</volume><issue>43</issue><spage>2527</spage><epage>2533</epage><pages>2527-2533</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>In spite of the recent advances in the development of high performing piezoelectric materials, their applications are typically limited to the direct conversion of mechanical impact energy to electrical energy, potentially risking mechanical failures. In this study, we developed piezoelectric poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) nanofibers integrated with SiO 2 -shelled Fe 3 O 4 magnetic nanoparticles, to utilize magnetic energy to reliably drive the piezoelectric effect. Specifically, we show that the shape of the magnetic nanoparticles exerts a significant effect on the efficiency of the magneto-mechano-electrical energy conversion as magnetic nanorods exhibit approximately 70% enhancement in electric field generation under cyclic magnetic fields as compared to nanospheres. Under an alternating magnetic field of 200 mT, the magnetic nanorod-piezoelectric nanofiber composite generated a peak-to-peak voltage of approximately 30 mV p-p with a superior durability without any performance degradation after over 1 million cycles. This study demonstrates the potential of magnetic-field responsive, piezoelectric-based materials in energy harvesting applications from non-mechanical energy sources. Magneto-mechano-electrical energy conversion in poly(vinylidenefluoride-trifluoroethylene) piezoelectric nanofibers integrated with magnetic nanoparticles in a particle-shape dependent manner.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9nr04722k</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6988-245X</orcidid><orcidid>https://orcid.org/0000-0001-5117-8958</orcidid><orcidid>https://orcid.org/0000-0002-6731-3111</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-11, Vol.11 (43), p.2527-2533
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_C9NR04722K
source Royal Society Of Chemistry Journals 2008-
subjects Direct conversion
Electric fields
Energy
Energy conversion efficiency
Energy harvesting
Iron oxides
Magnetic fields
Nanofibers
Nanoparticles
Nanorods
Nanospheres
Performance degradation
Piezoelectricity
Silicon dioxide
title Utilization of a magnetic field-driven microscopic motion for piezoelectric energy harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilization%20of%20a%20magnetic%20field-driven%20microscopic%20motion%20for%20piezoelectric%20energy%20harvesting&rft.jtitle=Nanoscale&rft.au=Kim,%20Sanggon&rft.date=2019-11-21&rft.volume=11&rft.issue=43&rft.spage=2527&rft.epage=2533&rft.pages=2527-2533&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr04722k&rft_dat=%3Cproquest_cross%3E2310667357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312483292&rft_id=info:pmid/&rfr_iscdi=true