Structurally colored protease responsive nanoparticle hydrogels with degradation-directed assembly

A tunable protease responsive nanoparticle hydrogel (PRNH) that demonstrates large non-iridescent color changes due to a degradation-directed assembly of nanoparticles is reported. Structurally colored composites are fabricated with silica particles, 4-arm poly(ethylene glycol) norbornene (4PEGN), a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-10, Vol.11 (38), p.1794-17912
Hauptverfasser: Torres, Leopoldo, Daristotle, John L, Ayyub, Omar B, Bellato Meinhardt, Bianca M, Garimella, Havisha, Margaronis, Artemis, Seifert, Soenke, Bedford, Nicholas M, Woehl, Taylor J, Kofinas, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17912
container_issue 38
container_start_page 1794
container_title Nanoscale
container_volume 11
creator Torres, Leopoldo
Daristotle, John L
Ayyub, Omar B
Bellato Meinhardt, Bianca M
Garimella, Havisha
Margaronis, Artemis
Seifert, Soenke
Bedford, Nicholas M
Woehl, Taylor J
Kofinas, Peter
description A tunable protease responsive nanoparticle hydrogel (PRNH) that demonstrates large non-iridescent color changes due to a degradation-directed assembly of nanoparticles is reported. Structurally colored composites are fabricated with silica particles, 4-arm poly(ethylene glycol) norbornene (4PEGN), and a proteolytically degradable peptide. When placed in a protease solution, the peptide crosslinks degrade causing electrostatic binding and adsorption of the polymer to the particle surface which leads to the assembly of particles into compact amorphous arrays with structural color. The particle surface charge and size is investigated to probe their effect on the assembly mechanism. Interestingly, only PRNHs with highly negative particle surface charge exhibit color changes after degradation. Ultra-small angle X-ray scattering revealed that the particles become coated in polymer after degradation, producing a material with less order compared to the initial state. Altering the particle diameter modulates the composites color, and all sizes investigated (178297 nm) undergo the degradation-directed assembly. Varying the amount of 4PEGN adjusts the swollen PRNH color and has no effect on the degradation-directed assembly. Taken together, the effects of surface charge, particle size, and polymer concentration allow for the formulation of new design rules for fabricating tunable PRNHs that display vivid changes in structural color upon degradation. Nanoparticle hydrogels undergo a degradation-directed assembly producing tunable structural color changes for potential sensor applications.
doi_str_mv 10.1039/c9nr04624k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9NR04624K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300217811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-5bed3fec5a7ba1a49132fa94ab320463262271dda1d9732289e031854fbb1dda3</originalsourceid><addsrcrecordid>eNpd0dtrFDEUBvAgiq3VF9-VQV9EGM1tLnmUxUtpUfDyHDLJmW5qNllzMsr-92bddoWSh4TkxyEfHyFPGX3DqFBvrYqZyp7Ln_fIKaeStkIM_P7x3MsT8gjxmtJeiV48JCeCdR1Xozgl07eSF1uWbELYNTaFlME125wKGIQmA25TRP8bmmhi2ppcvA3QrHcupysI2PzxZd04uMrGmeJTbJ3PYEsdYhBhM4XdY_JgNgHhyc1-Rn58eP999am9_PLxfPXusrWS0tJ2Ezgxg-3MMBlmpGKCz0ZJM4maoxe853xgzhnm1CA4HxVQwcZOztO0vxZn5MVhbsLiNVpfwK5tirF-R7O-rm6s6NUB1Yi_FsCiNx4thGAipAU152pgvJdsT1_eoddpybFG0FxQytkwMlbV64OyOSFmmPU2-43JO82o3tejV-rz13_1XFT8_GbkMm3AHeltHxU8O4CM9vj6v1_xF23qlZs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300217811</pqid></control><display><type>article</type><title>Structurally colored protease responsive nanoparticle hydrogels with degradation-directed assembly</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Torres, Leopoldo ; Daristotle, John L ; Ayyub, Omar B ; Bellato Meinhardt, Bianca M ; Garimella, Havisha ; Margaronis, Artemis ; Seifert, Soenke ; Bedford, Nicholas M ; Woehl, Taylor J ; Kofinas, Peter</creator><creatorcontrib>Torres, Leopoldo ; Daristotle, John L ; Ayyub, Omar B ; Bellato Meinhardt, Bianca M ; Garimella, Havisha ; Margaronis, Artemis ; Seifert, Soenke ; Bedford, Nicholas M ; Woehl, Taylor J ; Kofinas, Peter ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>A tunable protease responsive nanoparticle hydrogel (PRNH) that demonstrates large non-iridescent color changes due to a degradation-directed assembly of nanoparticles is reported. Structurally colored composites are fabricated with silica particles, 4-arm poly(ethylene glycol) norbornene (4PEGN), and a proteolytically degradable peptide. When placed in a protease solution, the peptide crosslinks degrade causing electrostatic binding and adsorption of the polymer to the particle surface which leads to the assembly of particles into compact amorphous arrays with structural color. The particle surface charge and size is investigated to probe their effect on the assembly mechanism. Interestingly, only PRNHs with highly negative particle surface charge exhibit color changes after degradation. Ultra-small angle X-ray scattering revealed that the particles become coated in polymer after degradation, producing a material with less order compared to the initial state. Altering the particle diameter modulates the composites color, and all sizes investigated (178297 nm) undergo the degradation-directed assembly. Varying the amount of 4PEGN adjusts the swollen PRNH color and has no effect on the degradation-directed assembly. Taken together, the effects of surface charge, particle size, and polymer concentration allow for the formulation of new design rules for fabricating tunable PRNHs that display vivid changes in structural color upon degradation. Nanoparticle hydrogels undergo a degradation-directed assembly producing tunable structural color changes for potential sensor applications.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr04624k</identifier><identifier>PMID: 31552983</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Assembly ; Crosslinking ; Degradation ; Hydrogels ; Hydrogels - chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Nanoparticles ; Nanoparticles - chemistry ; Particle Size ; Particulate composites ; Peptide Hydrolases - chemistry ; Peptides ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Polymers ; Protease ; Silicon dioxide ; Silicon Dioxide - chemistry ; Small angle X ray scattering ; Surface charge</subject><ispartof>Nanoscale, 2019-10, Vol.11 (38), p.1794-17912</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-5bed3fec5a7ba1a49132fa94ab320463262271dda1d9732289e031854fbb1dda3</citedby><cites>FETCH-LOGICAL-c400t-5bed3fec5a7ba1a49132fa94ab320463262271dda1d9732289e031854fbb1dda3</cites><orcidid>0000-0002-4307-2640 ; 0000-0002-3523-5390 ; 0000-0001-6657-3037 ; 0000000235235390 ; 0000000243072640 ; 0000000166573037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31552983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1616158$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Torres, Leopoldo</creatorcontrib><creatorcontrib>Daristotle, John L</creatorcontrib><creatorcontrib>Ayyub, Omar B</creatorcontrib><creatorcontrib>Bellato Meinhardt, Bianca M</creatorcontrib><creatorcontrib>Garimella, Havisha</creatorcontrib><creatorcontrib>Margaronis, Artemis</creatorcontrib><creatorcontrib>Seifert, Soenke</creatorcontrib><creatorcontrib>Bedford, Nicholas M</creatorcontrib><creatorcontrib>Woehl, Taylor J</creatorcontrib><creatorcontrib>Kofinas, Peter</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Structurally colored protease responsive nanoparticle hydrogels with degradation-directed assembly</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>A tunable protease responsive nanoparticle hydrogel (PRNH) that demonstrates large non-iridescent color changes due to a degradation-directed assembly of nanoparticles is reported. Structurally colored composites are fabricated with silica particles, 4-arm poly(ethylene glycol) norbornene (4PEGN), and a proteolytically degradable peptide. When placed in a protease solution, the peptide crosslinks degrade causing electrostatic binding and adsorption of the polymer to the particle surface which leads to the assembly of particles into compact amorphous arrays with structural color. The particle surface charge and size is investigated to probe their effect on the assembly mechanism. Interestingly, only PRNHs with highly negative particle surface charge exhibit color changes after degradation. Ultra-small angle X-ray scattering revealed that the particles become coated in polymer after degradation, producing a material with less order compared to the initial state. Altering the particle diameter modulates the composites color, and all sizes investigated (178297 nm) undergo the degradation-directed assembly. Varying the amount of 4PEGN adjusts the swollen PRNH color and has no effect on the degradation-directed assembly. Taken together, the effects of surface charge, particle size, and polymer concentration allow for the formulation of new design rules for fabricating tunable PRNHs that display vivid changes in structural color upon degradation. Nanoparticle hydrogels undergo a degradation-directed assembly producing tunable structural color changes for potential sensor applications.</description><subject>Assembly</subject><subject>Crosslinking</subject><subject>Degradation</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Particulate composites</subject><subject>Peptide Hydrolases - chemistry</subject><subject>Peptides</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers</subject><subject>Protease</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>Small angle X ray scattering</subject><subject>Surface charge</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0dtrFDEUBvAgiq3VF9-VQV9EGM1tLnmUxUtpUfDyHDLJmW5qNllzMsr-92bddoWSh4TkxyEfHyFPGX3DqFBvrYqZyp7Ln_fIKaeStkIM_P7x3MsT8gjxmtJeiV48JCeCdR1Xozgl07eSF1uWbELYNTaFlME125wKGIQmA25TRP8bmmhi2ppcvA3QrHcupysI2PzxZd04uMrGmeJTbJ3PYEsdYhBhM4XdY_JgNgHhyc1-Rn58eP999am9_PLxfPXusrWS0tJ2Ezgxg-3MMBlmpGKCz0ZJM4maoxe853xgzhnm1CA4HxVQwcZOztO0vxZn5MVhbsLiNVpfwK5tirF-R7O-rm6s6NUB1Yi_FsCiNx4thGAipAU152pgvJdsT1_eoddpybFG0FxQytkwMlbV64OyOSFmmPU2-43JO82o3tejV-rz13_1XFT8_GbkMm3AHeltHxU8O4CM9vj6v1_xF23qlZs</recordid><startdate>20191003</startdate><enddate>20191003</enddate><creator>Torres, Leopoldo</creator><creator>Daristotle, John L</creator><creator>Ayyub, Omar B</creator><creator>Bellato Meinhardt, Bianca M</creator><creator>Garimella, Havisha</creator><creator>Margaronis, Artemis</creator><creator>Seifert, Soenke</creator><creator>Bedford, Nicholas M</creator><creator>Woehl, Taylor J</creator><creator>Kofinas, Peter</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4307-2640</orcidid><orcidid>https://orcid.org/0000-0002-3523-5390</orcidid><orcidid>https://orcid.org/0000-0001-6657-3037</orcidid><orcidid>https://orcid.org/0000000235235390</orcidid><orcidid>https://orcid.org/0000000243072640</orcidid><orcidid>https://orcid.org/0000000166573037</orcidid></search><sort><creationdate>20191003</creationdate><title>Structurally colored protease responsive nanoparticle hydrogels with degradation-directed assembly</title><author>Torres, Leopoldo ; Daristotle, John L ; Ayyub, Omar B ; Bellato Meinhardt, Bianca M ; Garimella, Havisha ; Margaronis, Artemis ; Seifert, Soenke ; Bedford, Nicholas M ; Woehl, Taylor J ; Kofinas, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-5bed3fec5a7ba1a49132fa94ab320463262271dda1d9732289e031854fbb1dda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assembly</topic><topic>Crosslinking</topic><topic>Degradation</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Particulate composites</topic><topic>Peptide Hydrolases - chemistry</topic><topic>Peptides</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers</topic><topic>Protease</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>Small angle X ray scattering</topic><topic>Surface charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres, Leopoldo</creatorcontrib><creatorcontrib>Daristotle, John L</creatorcontrib><creatorcontrib>Ayyub, Omar B</creatorcontrib><creatorcontrib>Bellato Meinhardt, Bianca M</creatorcontrib><creatorcontrib>Garimella, Havisha</creatorcontrib><creatorcontrib>Margaronis, Artemis</creatorcontrib><creatorcontrib>Seifert, Soenke</creatorcontrib><creatorcontrib>Bedford, Nicholas M</creatorcontrib><creatorcontrib>Woehl, Taylor J</creatorcontrib><creatorcontrib>Kofinas, Peter</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres, Leopoldo</au><au>Daristotle, John L</au><au>Ayyub, Omar B</au><au>Bellato Meinhardt, Bianca M</au><au>Garimella, Havisha</au><au>Margaronis, Artemis</au><au>Seifert, Soenke</au><au>Bedford, Nicholas M</au><au>Woehl, Taylor J</au><au>Kofinas, Peter</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structurally colored protease responsive nanoparticle hydrogels with degradation-directed assembly</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-10-03</date><risdate>2019</risdate><volume>11</volume><issue>38</issue><spage>1794</spage><epage>17912</epage><pages>1794-17912</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>A tunable protease responsive nanoparticle hydrogel (PRNH) that demonstrates large non-iridescent color changes due to a degradation-directed assembly of nanoparticles is reported. Structurally colored composites are fabricated with silica particles, 4-arm poly(ethylene glycol) norbornene (4PEGN), and a proteolytically degradable peptide. When placed in a protease solution, the peptide crosslinks degrade causing electrostatic binding and adsorption of the polymer to the particle surface which leads to the assembly of particles into compact amorphous arrays with structural color. The particle surface charge and size is investigated to probe their effect on the assembly mechanism. Interestingly, only PRNHs with highly negative particle surface charge exhibit color changes after degradation. Ultra-small angle X-ray scattering revealed that the particles become coated in polymer after degradation, producing a material with less order compared to the initial state. Altering the particle diameter modulates the composites color, and all sizes investigated (178297 nm) undergo the degradation-directed assembly. Varying the amount of 4PEGN adjusts the swollen PRNH color and has no effect on the degradation-directed assembly. Taken together, the effects of surface charge, particle size, and polymer concentration allow for the formulation of new design rules for fabricating tunable PRNHs that display vivid changes in structural color upon degradation. Nanoparticle hydrogels undergo a degradation-directed assembly producing tunable structural color changes for potential sensor applications.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31552983</pmid><doi>10.1039/c9nr04624k</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4307-2640</orcidid><orcidid>https://orcid.org/0000-0002-3523-5390</orcidid><orcidid>https://orcid.org/0000-0001-6657-3037</orcidid><orcidid>https://orcid.org/0000000235235390</orcidid><orcidid>https://orcid.org/0000000243072640</orcidid><orcidid>https://orcid.org/0000000166573037</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-10, Vol.11 (38), p.1794-17912
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_C9NR04624K
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Assembly
Crosslinking
Degradation
Hydrogels
Hydrogels - chemistry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Nanoparticles
Nanoparticles - chemistry
Particle Size
Particulate composites
Peptide Hydrolases - chemistry
Peptides
Polyethylene glycol
Polyethylene Glycols - chemistry
Polymers
Protease
Silicon dioxide
Silicon Dioxide - chemistry
Small angle X ray scattering
Surface charge
title Structurally colored protease responsive nanoparticle hydrogels with degradation-directed assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structurally%20colored%20protease%20responsive%20nanoparticle%20hydrogels%20with%20degradation-directed%20assembly&rft.jtitle=Nanoscale&rft.au=Torres,%20Leopoldo&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-10-03&rft.volume=11&rft.issue=38&rft.spage=1794&rft.epage=17912&rft.pages=1794-17912&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr04624k&rft_dat=%3Cproquest_cross%3E2300217811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300217811&rft_id=info:pmid/31552983&rfr_iscdi=true