Delivery of drugs into brain tumors using multicomponent silica nanoparticles

Glioblastomas are highly lethal cancers defined by resistance to conventional therapies and rapid recurrence. While new brain tumor cell-specific drugs are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. We developed a multicomponent nanoparticle,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-06, Vol.11 (24), p.1191-11921
Hauptverfasser: Turan, O, Bielecki, P, Perera, V, Lorkowski, M, Covarrubias, G, Tong, K, Yun, A, Rahmy, A, Ouyang, T, Raghunathan, S, Gopalakrishnan, R, Griswold, M. A, Ghaghada, K. B, Peiris, P. M, Karathanasis, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11921
container_issue 24
container_start_page 1191
container_title Nanoscale
container_volume 11
creator Turan, O
Bielecki, P
Perera, V
Lorkowski, M
Covarrubias, G
Tong, K
Yun, A
Rahmy, A
Ouyang, T
Raghunathan, S
Gopalakrishnan, R
Griswold, M. A
Ghaghada, K. B
Peiris, P. M
Karathanasis, E
description Glioblastomas are highly lethal cancers defined by resistance to conventional therapies and rapid recurrence. While new brain tumor cell-specific drugs are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. We developed a multicomponent nanoparticle, consisting of an iron oxide core and a mesoporous silica shell that can effectively deliver drugs across the blood-brain barrier into glioma cells. When exposed to alternating low-power radiofrequency (RF) fields, the nanoparticle's mechanical tumbling releases the entrapped drug molecules from the pores of the silica shell. After directing the nanoparticle to target the near-perivascular regions and altered endothelium of the brain tumor via fibronectin-targeting ligands, rapid drug release from the nanoparticles is triggered by RF facilitating wide distribution of drug delivery across the blood-brain tumor interface. After targeting the nanoparticle to brain tumors, widespread drug delivery to the entire tumor is triggered by a radiofrequency field.
doi_str_mv 10.1039/c9nr02876e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9NR02876E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243434324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-df08575cc8ee5cde84976c773c441e5e40ce7d42a5615188e2456649904f2eb53</originalsourceid><addsrcrecordid>eNp9kd1LHDEUxYNUdN364rsl4puwNt-ZeSmUddWCbaG0zyGbubNmmUnGZGbB_75j1676Inm4gd_h3MO5CJ1QckkJLz-7MiTCCq1gD00YEWTGuWYfdn8lDtFRzmtCVMkVP0CHnNJCF0JO0PcraPwG0iOONa7SsMrYhz7iZbI-4H5oY8p4yD6scDs0vXex7WKA0OPsG-8sDjbEzqaRNJA_ov3aNhmOn-cU_ble_J7fzu5-3nybf72bOVHKflbVpJBaOlcASFdBIUqtnNbcCUFBgiAOdCWYlYpKWhTAhFRKlCURNYOl5FP0ZevbDcsWKjfmSbYxXfKtTY8mWm_ekuDvzSpujNZaKUZHg_NngxQfBsi9WcchhTGzYUzwpzeOKbrYqlyKOSeodxsoMU_Vm3n549e_6hej-NPrTDvp_65HwelWkLLb0ZfbjfzsPW66quZ_AWDJlc8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243434324</pqid></control><display><type>article</type><title>Delivery of drugs into brain tumors using multicomponent silica nanoparticles</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Turan, O ; Bielecki, P ; Perera, V ; Lorkowski, M ; Covarrubias, G ; Tong, K ; Yun, A ; Rahmy, A ; Ouyang, T ; Raghunathan, S ; Gopalakrishnan, R ; Griswold, M. A ; Ghaghada, K. B ; Peiris, P. M ; Karathanasis, E</creator><creatorcontrib>Turan, O ; Bielecki, P ; Perera, V ; Lorkowski, M ; Covarrubias, G ; Tong, K ; Yun, A ; Rahmy, A ; Ouyang, T ; Raghunathan, S ; Gopalakrishnan, R ; Griswold, M. A ; Ghaghada, K. B ; Peiris, P. M ; Karathanasis, E</creatorcontrib><description>Glioblastomas are highly lethal cancers defined by resistance to conventional therapies and rapid recurrence. While new brain tumor cell-specific drugs are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. We developed a multicomponent nanoparticle, consisting of an iron oxide core and a mesoporous silica shell that can effectively deliver drugs across the blood-brain barrier into glioma cells. When exposed to alternating low-power radiofrequency (RF) fields, the nanoparticle's mechanical tumbling releases the entrapped drug molecules from the pores of the silica shell. After directing the nanoparticle to target the near-perivascular regions and altered endothelium of the brain tumor via fibronectin-targeting ligands, rapid drug release from the nanoparticles is triggered by RF facilitating wide distribution of drug delivery across the blood-brain tumor interface. After targeting the nanoparticle to brain tumors, widespread drug delivery to the entire tumor is triggered by a radiofrequency field.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr02876e</identifier><identifier>PMID: 31187845</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Blood ; Blood-Brain Barrier ; Brain ; Brain cancer ; Brain Neoplasms - drug therapy ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Cell Line, Tumor ; Drug Carriers - chemistry ; Drug Carriers - pharmacokinetics ; Drug Carriers - pharmacology ; Drug delivery systems ; Endothelium ; Female ; Ferric Compounds - chemistry ; Ferric Compounds - pharmacokinetics ; Ferric Compounds - pharmacology ; Fibronectin ; Iron oxides ; Mice ; Mice, Nude ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - therapeutic use ; Radio frequency ; Silicon dioxide ; Silicon Dioxide - chemistry ; Silicon Dioxide - pharmacokinetics ; Silicon Dioxide - pharmacology ; Tumbling ; Tumors</subject><ispartof>Nanoscale, 2019-06, Vol.11 (24), p.1191-11921</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-df08575cc8ee5cde84976c773c441e5e40ce7d42a5615188e2456649904f2eb53</citedby><cites>FETCH-LOGICAL-c495t-df08575cc8ee5cde84976c773c441e5e40ce7d42a5615188e2456649904f2eb53</cites><orcidid>0000-0001-7484-7552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31187845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turan, O</creatorcontrib><creatorcontrib>Bielecki, P</creatorcontrib><creatorcontrib>Perera, V</creatorcontrib><creatorcontrib>Lorkowski, M</creatorcontrib><creatorcontrib>Covarrubias, G</creatorcontrib><creatorcontrib>Tong, K</creatorcontrib><creatorcontrib>Yun, A</creatorcontrib><creatorcontrib>Rahmy, A</creatorcontrib><creatorcontrib>Ouyang, T</creatorcontrib><creatorcontrib>Raghunathan, S</creatorcontrib><creatorcontrib>Gopalakrishnan, R</creatorcontrib><creatorcontrib>Griswold, M. A</creatorcontrib><creatorcontrib>Ghaghada, K. B</creatorcontrib><creatorcontrib>Peiris, P. M</creatorcontrib><creatorcontrib>Karathanasis, E</creatorcontrib><title>Delivery of drugs into brain tumors using multicomponent silica nanoparticles</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Glioblastomas are highly lethal cancers defined by resistance to conventional therapies and rapid recurrence. While new brain tumor cell-specific drugs are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. We developed a multicomponent nanoparticle, consisting of an iron oxide core and a mesoporous silica shell that can effectively deliver drugs across the blood-brain barrier into glioma cells. When exposed to alternating low-power radiofrequency (RF) fields, the nanoparticle's mechanical tumbling releases the entrapped drug molecules from the pores of the silica shell. After directing the nanoparticle to target the near-perivascular regions and altered endothelium of the brain tumor via fibronectin-targeting ligands, rapid drug release from the nanoparticles is triggered by RF facilitating wide distribution of drug delivery across the blood-brain tumor interface. After targeting the nanoparticle to brain tumors, widespread drug delivery to the entire tumor is triggered by a radiofrequency field.</description><subject>Animals</subject><subject>Blood</subject><subject>Blood-Brain Barrier</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - pharmacokinetics</subject><subject>Drug Carriers - pharmacology</subject><subject>Drug delivery systems</subject><subject>Endothelium</subject><subject>Female</subject><subject>Ferric Compounds - chemistry</subject><subject>Ferric Compounds - pharmacokinetics</subject><subject>Ferric Compounds - pharmacology</subject><subject>Fibronectin</subject><subject>Iron oxides</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - therapeutic use</subject><subject>Radio frequency</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>Silicon Dioxide - pharmacokinetics</subject><subject>Silicon Dioxide - pharmacology</subject><subject>Tumbling</subject><subject>Tumors</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd1LHDEUxYNUdN364rsl4puwNt-ZeSmUddWCbaG0zyGbubNmmUnGZGbB_75j1676Inm4gd_h3MO5CJ1QckkJLz-7MiTCCq1gD00YEWTGuWYfdn8lDtFRzmtCVMkVP0CHnNJCF0JO0PcraPwG0iOONa7SsMrYhz7iZbI-4H5oY8p4yD6scDs0vXex7WKA0OPsG-8sDjbEzqaRNJA_ov3aNhmOn-cU_ble_J7fzu5-3nybf72bOVHKflbVpJBaOlcASFdBIUqtnNbcCUFBgiAOdCWYlYpKWhTAhFRKlCURNYOl5FP0ZevbDcsWKjfmSbYxXfKtTY8mWm_ekuDvzSpujNZaKUZHg_NngxQfBsi9WcchhTGzYUzwpzeOKbrYqlyKOSeodxsoMU_Vm3n549e_6hej-NPrTDvp_65HwelWkLLb0ZfbjfzsPW66quZ_AWDJlc8</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Turan, O</creator><creator>Bielecki, P</creator><creator>Perera, V</creator><creator>Lorkowski, M</creator><creator>Covarrubias, G</creator><creator>Tong, K</creator><creator>Yun, A</creator><creator>Rahmy, A</creator><creator>Ouyang, T</creator><creator>Raghunathan, S</creator><creator>Gopalakrishnan, R</creator><creator>Griswold, M. A</creator><creator>Ghaghada, K. B</creator><creator>Peiris, P. M</creator><creator>Karathanasis, E</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7484-7552</orcidid></search><sort><creationdate>20190620</creationdate><title>Delivery of drugs into brain tumors using multicomponent silica nanoparticles</title><author>Turan, O ; Bielecki, P ; Perera, V ; Lorkowski, M ; Covarrubias, G ; Tong, K ; Yun, A ; Rahmy, A ; Ouyang, T ; Raghunathan, S ; Gopalakrishnan, R ; Griswold, M. A ; Ghaghada, K. B ; Peiris, P. M ; Karathanasis, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-df08575cc8ee5cde84976c773c441e5e40ce7d42a5615188e2456649904f2eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Blood</topic><topic>Blood-Brain Barrier</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - pharmacokinetics</topic><topic>Drug Carriers - pharmacology</topic><topic>Drug delivery systems</topic><topic>Endothelium</topic><topic>Female</topic><topic>Ferric Compounds - chemistry</topic><topic>Ferric Compounds - pharmacokinetics</topic><topic>Ferric Compounds - pharmacology</topic><topic>Fibronectin</topic><topic>Iron oxides</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - therapeutic use</topic><topic>Radio frequency</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>Silicon Dioxide - pharmacokinetics</topic><topic>Silicon Dioxide - pharmacology</topic><topic>Tumbling</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turan, O</creatorcontrib><creatorcontrib>Bielecki, P</creatorcontrib><creatorcontrib>Perera, V</creatorcontrib><creatorcontrib>Lorkowski, M</creatorcontrib><creatorcontrib>Covarrubias, G</creatorcontrib><creatorcontrib>Tong, K</creatorcontrib><creatorcontrib>Yun, A</creatorcontrib><creatorcontrib>Rahmy, A</creatorcontrib><creatorcontrib>Ouyang, T</creatorcontrib><creatorcontrib>Raghunathan, S</creatorcontrib><creatorcontrib>Gopalakrishnan, R</creatorcontrib><creatorcontrib>Griswold, M. A</creatorcontrib><creatorcontrib>Ghaghada, K. B</creatorcontrib><creatorcontrib>Peiris, P. M</creatorcontrib><creatorcontrib>Karathanasis, E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turan, O</au><au>Bielecki, P</au><au>Perera, V</au><au>Lorkowski, M</au><au>Covarrubias, G</au><au>Tong, K</au><au>Yun, A</au><au>Rahmy, A</au><au>Ouyang, T</au><au>Raghunathan, S</au><au>Gopalakrishnan, R</au><au>Griswold, M. A</au><au>Ghaghada, K. B</au><au>Peiris, P. M</au><au>Karathanasis, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delivery of drugs into brain tumors using multicomponent silica nanoparticles</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>11</volume><issue>24</issue><spage>1191</spage><epage>11921</epage><pages>1191-11921</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Glioblastomas are highly lethal cancers defined by resistance to conventional therapies and rapid recurrence. While new brain tumor cell-specific drugs are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. We developed a multicomponent nanoparticle, consisting of an iron oxide core and a mesoporous silica shell that can effectively deliver drugs across the blood-brain barrier into glioma cells. When exposed to alternating low-power radiofrequency (RF) fields, the nanoparticle's mechanical tumbling releases the entrapped drug molecules from the pores of the silica shell. After directing the nanoparticle to target the near-perivascular regions and altered endothelium of the brain tumor via fibronectin-targeting ligands, rapid drug release from the nanoparticles is triggered by RF facilitating wide distribution of drug delivery across the blood-brain tumor interface. After targeting the nanoparticle to brain tumors, widespread drug delivery to the entire tumor is triggered by a radiofrequency field.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31187845</pmid><doi>10.1039/c9nr02876e</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7484-7552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-06, Vol.11 (24), p.1191-11921
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_C9NR02876E
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Animals
Blood
Blood-Brain Barrier
Brain
Brain cancer
Brain Neoplasms - drug therapy
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Cell Line, Tumor
Drug Carriers - chemistry
Drug Carriers - pharmacokinetics
Drug Carriers - pharmacology
Drug delivery systems
Endothelium
Female
Ferric Compounds - chemistry
Ferric Compounds - pharmacokinetics
Ferric Compounds - pharmacology
Fibronectin
Iron oxides
Mice
Mice, Nude
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - therapeutic use
Radio frequency
Silicon dioxide
Silicon Dioxide - chemistry
Silicon Dioxide - pharmacokinetics
Silicon Dioxide - pharmacology
Tumbling
Tumors
title Delivery of drugs into brain tumors using multicomponent silica nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delivery%20of%20drugs%20into%20brain%20tumors%20using%20multicomponent%20silica%20nanoparticles&rft.jtitle=Nanoscale&rft.au=Turan,%20O&rft.date=2019-06-20&rft.volume=11&rft.issue=24&rft.spage=1191&rft.epage=11921&rft.pages=1191-11921&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr02876e&rft_dat=%3Cproquest_cross%3E2243434324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243434324&rft_id=info:pmid/31187845&rfr_iscdi=true