Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities

The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of 'beyond Li' battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2020-01, Vol.7 (3), p.843-854
Hauptverfasser: Davidson, Rachel, Verma, Ankit, Santos, David, Hao, Feng, Fincher, Cole D, Zhao, Dexin, Attari, Vahid, Schofield, Parker, Van Buskirk, Jonathan, Fraticelli-Cartagena, Antonio, Alivio, Theodore E. G, Arroyave, Raymundo, Xie, Kelvin, Pharr, Matt, Mukherjee, Partha P, Banerjee, Sarbajit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue 3
container_start_page 843
container_title Materials horizons
container_volume 7
creator Davidson, Rachel
Verma, Ankit
Santos, David
Hao, Feng
Fincher, Cole D
Zhao, Dexin
Attari, Vahid
Schofield, Parker
Van Buskirk, Jonathan
Fraticelli-Cartagena, Antonio
Alivio, Theodore E. G
Arroyave, Raymundo
Xie, Kelvin
Pharr, Matt
Mukherjee, Partha P
Banerjee, Sarbajit
description The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of 'beyond Li' battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg-Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination. Galvanostatic electrodeposition from Grignard reagents in symmetric Mg-Mg cells is used to map Mg morphologies from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and entangled nanowire mats.
doi_str_mv 10.1039/c9mh01367a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9MH01367A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374061012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-5ad0757e376688578aac758009c6df006165a37307f0ed1f5f8eb951e80f9ff53</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxoMoOOYu3oWIN6H6sjRNexxDnbDhRa-WmL60GWtSkxbxv7dzojdP74Pfj-_BR8g5gxsGvLjVRdsA45lUR2QyB8GSjAtx_JtTeUpmMW4BRisVkMOEvG5U11lX0xZ1o5yNbaTKVbQO_qNvaMDathipN7RVtcNoh5biDnUffIWdj7a33lHV08bWDdVDCOh6WqHbE4xn5MSoXcTZz52Sl_u75-UqWT89PC4X60SnDPpEqAqkkMhlluW5kLlSWoocoNBZZQAylgnFJQdpACtmhMnxrRAMczCFMYJPydWhtwv-fcDYl1s_BDe-LOdcpmMBsPloXR8sHXyMAU3ZBduq8FkyKPcTlstis_qecDHKFwc5RP3r_U088sv_eNlVhn8BV4h5aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374061012</pqid></control><display><type>article</type><title>Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Davidson, Rachel ; Verma, Ankit ; Santos, David ; Hao, Feng ; Fincher, Cole D ; Zhao, Dexin ; Attari, Vahid ; Schofield, Parker ; Van Buskirk, Jonathan ; Fraticelli-Cartagena, Antonio ; Alivio, Theodore E. G ; Arroyave, Raymundo ; Xie, Kelvin ; Pharr, Matt ; Mukherjee, Partha P ; Banerjee, Sarbajit</creator><creatorcontrib>Davidson, Rachel ; Verma, Ankit ; Santos, David ; Hao, Feng ; Fincher, Cole D ; Zhao, Dexin ; Attari, Vahid ; Schofield, Parker ; Van Buskirk, Jonathan ; Fraticelli-Cartagena, Antonio ; Alivio, Theodore E. G ; Arroyave, Raymundo ; Xie, Kelvin ; Pharr, Matt ; Mukherjee, Partha P ; Banerjee, Sarbajit</creatorcontrib><description>The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of 'beyond Li' battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg-Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination. Galvanostatic electrodeposition from Grignard reagents in symmetric Mg-Mg cells is used to map Mg morphologies from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and entangled nanowire mats.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/c9mh01367a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Current density ; Dendritic structure ; Electrodeposition ; Electrolytes ; Electrolytic cells ; Fractals ; Gravimetry ; Image reconstruction ; Magnesium ; Mapping ; Mats ; Microscopy ; Morphology ; Nanowires ; Optical density ; Reagents ; Selective surfaces ; Separators ; Shear modulus ; Soft x rays ; Tomography ; X ray microscopy</subject><ispartof>Materials horizons, 2020-01, Vol.7 (3), p.843-854</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-5ad0757e376688578aac758009c6df006165a37307f0ed1f5f8eb951e80f9ff53</citedby><cites>FETCH-LOGICAL-c410t-5ad0757e376688578aac758009c6df006165a37307f0ed1f5f8eb951e80f9ff53</cites><orcidid>0000-0003-3347-3480 ; 0000-0002-2028-4675 ; 0000-0002-7610-8574 ; 0000-0001-9522-8822 ; 0000-0001-7900-7261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Davidson, Rachel</creatorcontrib><creatorcontrib>Verma, Ankit</creatorcontrib><creatorcontrib>Santos, David</creatorcontrib><creatorcontrib>Hao, Feng</creatorcontrib><creatorcontrib>Fincher, Cole D</creatorcontrib><creatorcontrib>Zhao, Dexin</creatorcontrib><creatorcontrib>Attari, Vahid</creatorcontrib><creatorcontrib>Schofield, Parker</creatorcontrib><creatorcontrib>Van Buskirk, Jonathan</creatorcontrib><creatorcontrib>Fraticelli-Cartagena, Antonio</creatorcontrib><creatorcontrib>Alivio, Theodore E. G</creatorcontrib><creatorcontrib>Arroyave, Raymundo</creatorcontrib><creatorcontrib>Xie, Kelvin</creatorcontrib><creatorcontrib>Pharr, Matt</creatorcontrib><creatorcontrib>Mukherjee, Partha P</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><title>Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities</title><title>Materials horizons</title><description>The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of 'beyond Li' battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg-Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination. Galvanostatic electrodeposition from Grignard reagents in symmetric Mg-Mg cells is used to map Mg morphologies from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and entangled nanowire mats.</description><subject>Current density</subject><subject>Dendritic structure</subject><subject>Electrodeposition</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Fractals</subject><subject>Gravimetry</subject><subject>Image reconstruction</subject><subject>Magnesium</subject><subject>Mapping</subject><subject>Mats</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanowires</subject><subject>Optical density</subject><subject>Reagents</subject><subject>Selective surfaces</subject><subject>Separators</subject><subject>Shear modulus</subject><subject>Soft x rays</subject><subject>Tomography</subject><subject>X ray microscopy</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAUxoMoOOYu3oWIN6H6sjRNexxDnbDhRa-WmL60GWtSkxbxv7dzojdP74Pfj-_BR8g5gxsGvLjVRdsA45lUR2QyB8GSjAtx_JtTeUpmMW4BRisVkMOEvG5U11lX0xZ1o5yNbaTKVbQO_qNvaMDathipN7RVtcNoh5biDnUffIWdj7a33lHV08bWDdVDCOh6WqHbE4xn5MSoXcTZz52Sl_u75-UqWT89PC4X60SnDPpEqAqkkMhlluW5kLlSWoocoNBZZQAylgnFJQdpACtmhMnxrRAMczCFMYJPydWhtwv-fcDYl1s_BDe-LOdcpmMBsPloXR8sHXyMAU3ZBduq8FkyKPcTlstis_qecDHKFwc5RP3r_U088sv_eNlVhn8BV4h5aw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Davidson, Rachel</creator><creator>Verma, Ankit</creator><creator>Santos, David</creator><creator>Hao, Feng</creator><creator>Fincher, Cole D</creator><creator>Zhao, Dexin</creator><creator>Attari, Vahid</creator><creator>Schofield, Parker</creator><creator>Van Buskirk, Jonathan</creator><creator>Fraticelli-Cartagena, Antonio</creator><creator>Alivio, Theodore E. G</creator><creator>Arroyave, Raymundo</creator><creator>Xie, Kelvin</creator><creator>Pharr, Matt</creator><creator>Mukherjee, Partha P</creator><creator>Banerjee, Sarbajit</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3347-3480</orcidid><orcidid>https://orcid.org/0000-0002-2028-4675</orcidid><orcidid>https://orcid.org/0000-0002-7610-8574</orcidid><orcidid>https://orcid.org/0000-0001-9522-8822</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid></search><sort><creationdate>20200101</creationdate><title>Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities</title><author>Davidson, Rachel ; Verma, Ankit ; Santos, David ; Hao, Feng ; Fincher, Cole D ; Zhao, Dexin ; Attari, Vahid ; Schofield, Parker ; Van Buskirk, Jonathan ; Fraticelli-Cartagena, Antonio ; Alivio, Theodore E. G ; Arroyave, Raymundo ; Xie, Kelvin ; Pharr, Matt ; Mukherjee, Partha P ; Banerjee, Sarbajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-5ad0757e376688578aac758009c6df006165a37307f0ed1f5f8eb951e80f9ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Current density</topic><topic>Dendritic structure</topic><topic>Electrodeposition</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Fractals</topic><topic>Gravimetry</topic><topic>Image reconstruction</topic><topic>Magnesium</topic><topic>Mapping</topic><topic>Mats</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanowires</topic><topic>Optical density</topic><topic>Reagents</topic><topic>Selective surfaces</topic><topic>Separators</topic><topic>Shear modulus</topic><topic>Soft x rays</topic><topic>Tomography</topic><topic>X ray microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davidson, Rachel</creatorcontrib><creatorcontrib>Verma, Ankit</creatorcontrib><creatorcontrib>Santos, David</creatorcontrib><creatorcontrib>Hao, Feng</creatorcontrib><creatorcontrib>Fincher, Cole D</creatorcontrib><creatorcontrib>Zhao, Dexin</creatorcontrib><creatorcontrib>Attari, Vahid</creatorcontrib><creatorcontrib>Schofield, Parker</creatorcontrib><creatorcontrib>Van Buskirk, Jonathan</creatorcontrib><creatorcontrib>Fraticelli-Cartagena, Antonio</creatorcontrib><creatorcontrib>Alivio, Theodore E. G</creatorcontrib><creatorcontrib>Arroyave, Raymundo</creatorcontrib><creatorcontrib>Xie, Kelvin</creatorcontrib><creatorcontrib>Pharr, Matt</creatorcontrib><creatorcontrib>Mukherjee, Partha P</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davidson, Rachel</au><au>Verma, Ankit</au><au>Santos, David</au><au>Hao, Feng</au><au>Fincher, Cole D</au><au>Zhao, Dexin</au><au>Attari, Vahid</au><au>Schofield, Parker</au><au>Van Buskirk, Jonathan</au><au>Fraticelli-Cartagena, Antonio</au><au>Alivio, Theodore E. G</au><au>Arroyave, Raymundo</au><au>Xie, Kelvin</au><au>Pharr, Matt</au><au>Mukherjee, Partha P</au><au>Banerjee, Sarbajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities</atitle><jtitle>Materials horizons</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>843</spage><epage>854</epage><pages>843-854</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of 'beyond Li' battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg-Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination. Galvanostatic electrodeposition from Grignard reagents in symmetric Mg-Mg cells is used to map Mg morphologies from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and entangled nanowire mats.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9mh01367a</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3347-3480</orcidid><orcidid>https://orcid.org/0000-0002-2028-4675</orcidid><orcidid>https://orcid.org/0000-0002-7610-8574</orcidid><orcidid>https://orcid.org/0000-0001-9522-8822</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2020-01, Vol.7 (3), p.843-854
issn 2051-6347
2051-6355
language eng
recordid cdi_crossref_primary_10_1039_C9MH01367A
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Current density
Dendritic structure
Electrodeposition
Electrolytes
Electrolytic cells
Fractals
Gravimetry
Image reconstruction
Magnesium
Mapping
Mats
Microscopy
Morphology
Nanowires
Optical density
Reagents
Selective surfaces
Separators
Shear modulus
Soft x rays
Tomography
X ray microscopy
title Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20mechanisms%20and%20growth%20regimes%20of%20magnesium%20electrodeposition%20at%20high%20current%20densities&rft.jtitle=Materials%20horizons&rft.au=Davidson,%20Rachel&rft.date=2020-01-01&rft.volume=7&rft.issue=3&rft.spage=843&rft.epage=854&rft.pages=843-854&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/c9mh01367a&rft_dat=%3Cproquest_cross%3E2374061012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374061012&rft_id=info:pmid/&rfr_iscdi=true