Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities
The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of 'beyond Li' battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite gr...
Gespeichert in:
Veröffentlicht in: | Materials horizons 2020-01, Vol.7 (3), p.843-854 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 854 |
---|---|
container_issue | 3 |
container_start_page | 843 |
container_title | Materials horizons |
container_volume | 7 |
creator | Davidson, Rachel Verma, Ankit Santos, David Hao, Feng Fincher, Cole D Zhao, Dexin Attari, Vahid Schofield, Parker Van Buskirk, Jonathan Fraticelli-Cartagena, Antonio Alivio, Theodore E. G Arroyave, Raymundo Xie, Kelvin Pharr, Matt Mukherjee, Partha P Banerjee, Sarbajit |
description | The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of 'beyond Li' battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg-Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination.
Galvanostatic electrodeposition from Grignard reagents in symmetric Mg-Mg cells is used to map Mg morphologies from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and entangled nanowire mats. |
doi_str_mv | 10.1039/c9mh01367a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9MH01367A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374061012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-5ad0757e376688578aac758009c6df006165a37307f0ed1f5f8eb951e80f9ff53</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxoMoOOYu3oWIN6H6sjRNexxDnbDhRa-WmL60GWtSkxbxv7dzojdP74Pfj-_BR8g5gxsGvLjVRdsA45lUR2QyB8GSjAtx_JtTeUpmMW4BRisVkMOEvG5U11lX0xZ1o5yNbaTKVbQO_qNvaMDathipN7RVtcNoh5biDnUffIWdj7a33lHV08bWDdVDCOh6WqHbE4xn5MSoXcTZz52Sl_u75-UqWT89PC4X60SnDPpEqAqkkMhlluW5kLlSWoocoNBZZQAylgnFJQdpACtmhMnxrRAMczCFMYJPydWhtwv-fcDYl1s_BDe-LOdcpmMBsPloXR8sHXyMAU3ZBduq8FkyKPcTlstis_qecDHKFwc5RP3r_U088sv_eNlVhn8BV4h5aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374061012</pqid></control><display><type>article</type><title>Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Davidson, Rachel ; Verma, Ankit ; Santos, David ; Hao, Feng ; Fincher, Cole D ; Zhao, Dexin ; Attari, Vahid ; Schofield, Parker ; Van Buskirk, Jonathan ; Fraticelli-Cartagena, Antonio ; Alivio, Theodore E. G ; Arroyave, Raymundo ; Xie, Kelvin ; Pharr, Matt ; Mukherjee, Partha P ; Banerjee, Sarbajit</creator><creatorcontrib>Davidson, Rachel ; Verma, Ankit ; Santos, David ; Hao, Feng ; Fincher, Cole D ; Zhao, Dexin ; Attari, Vahid ; Schofield, Parker ; Van Buskirk, Jonathan ; Fraticelli-Cartagena, Antonio ; Alivio, Theodore E. G ; Arroyave, Raymundo ; Xie, Kelvin ; Pharr, Matt ; Mukherjee, Partha P ; Banerjee, Sarbajit</creatorcontrib><description>The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of 'beyond Li' battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg-Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination.
Galvanostatic electrodeposition from Grignard reagents in symmetric Mg-Mg cells is used to map Mg morphologies from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and entangled nanowire mats.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/c9mh01367a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Current density ; Dendritic structure ; Electrodeposition ; Electrolytes ; Electrolytic cells ; Fractals ; Gravimetry ; Image reconstruction ; Magnesium ; Mapping ; Mats ; Microscopy ; Morphology ; Nanowires ; Optical density ; Reagents ; Selective surfaces ; Separators ; Shear modulus ; Soft x rays ; Tomography ; X ray microscopy</subject><ispartof>Materials horizons, 2020-01, Vol.7 (3), p.843-854</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-5ad0757e376688578aac758009c6df006165a37307f0ed1f5f8eb951e80f9ff53</citedby><cites>FETCH-LOGICAL-c410t-5ad0757e376688578aac758009c6df006165a37307f0ed1f5f8eb951e80f9ff53</cites><orcidid>0000-0003-3347-3480 ; 0000-0002-2028-4675 ; 0000-0002-7610-8574 ; 0000-0001-9522-8822 ; 0000-0001-7900-7261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Davidson, Rachel</creatorcontrib><creatorcontrib>Verma, Ankit</creatorcontrib><creatorcontrib>Santos, David</creatorcontrib><creatorcontrib>Hao, Feng</creatorcontrib><creatorcontrib>Fincher, Cole D</creatorcontrib><creatorcontrib>Zhao, Dexin</creatorcontrib><creatorcontrib>Attari, Vahid</creatorcontrib><creatorcontrib>Schofield, Parker</creatorcontrib><creatorcontrib>Van Buskirk, Jonathan</creatorcontrib><creatorcontrib>Fraticelli-Cartagena, Antonio</creatorcontrib><creatorcontrib>Alivio, Theodore E. G</creatorcontrib><creatorcontrib>Arroyave, Raymundo</creatorcontrib><creatorcontrib>Xie, Kelvin</creatorcontrib><creatorcontrib>Pharr, Matt</creatorcontrib><creatorcontrib>Mukherjee, Partha P</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><title>Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities</title><title>Materials horizons</title><description>The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of 'beyond Li' battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg-Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination.
Galvanostatic electrodeposition from Grignard reagents in symmetric Mg-Mg cells is used to map Mg morphologies from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and entangled nanowire mats.</description><subject>Current density</subject><subject>Dendritic structure</subject><subject>Electrodeposition</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Fractals</subject><subject>Gravimetry</subject><subject>Image reconstruction</subject><subject>Magnesium</subject><subject>Mapping</subject><subject>Mats</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanowires</subject><subject>Optical density</subject><subject>Reagents</subject><subject>Selective surfaces</subject><subject>Separators</subject><subject>Shear modulus</subject><subject>Soft x rays</subject><subject>Tomography</subject><subject>X ray microscopy</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAUxoMoOOYu3oWIN6H6sjRNexxDnbDhRa-WmL60GWtSkxbxv7dzojdP74Pfj-_BR8g5gxsGvLjVRdsA45lUR2QyB8GSjAtx_JtTeUpmMW4BRisVkMOEvG5U11lX0xZ1o5yNbaTKVbQO_qNvaMDathipN7RVtcNoh5biDnUffIWdj7a33lHV08bWDdVDCOh6WqHbE4xn5MSoXcTZz52Sl_u75-UqWT89PC4X60SnDPpEqAqkkMhlluW5kLlSWoocoNBZZQAylgnFJQdpACtmhMnxrRAMczCFMYJPydWhtwv-fcDYl1s_BDe-LOdcpmMBsPloXR8sHXyMAU3ZBduq8FkyKPcTlstis_qecDHKFwc5RP3r_U088sv_eNlVhn8BV4h5aw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Davidson, Rachel</creator><creator>Verma, Ankit</creator><creator>Santos, David</creator><creator>Hao, Feng</creator><creator>Fincher, Cole D</creator><creator>Zhao, Dexin</creator><creator>Attari, Vahid</creator><creator>Schofield, Parker</creator><creator>Van Buskirk, Jonathan</creator><creator>Fraticelli-Cartagena, Antonio</creator><creator>Alivio, Theodore E. G</creator><creator>Arroyave, Raymundo</creator><creator>Xie, Kelvin</creator><creator>Pharr, Matt</creator><creator>Mukherjee, Partha P</creator><creator>Banerjee, Sarbajit</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3347-3480</orcidid><orcidid>https://orcid.org/0000-0002-2028-4675</orcidid><orcidid>https://orcid.org/0000-0002-7610-8574</orcidid><orcidid>https://orcid.org/0000-0001-9522-8822</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid></search><sort><creationdate>20200101</creationdate><title>Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities</title><author>Davidson, Rachel ; Verma, Ankit ; Santos, David ; Hao, Feng ; Fincher, Cole D ; Zhao, Dexin ; Attari, Vahid ; Schofield, Parker ; Van Buskirk, Jonathan ; Fraticelli-Cartagena, Antonio ; Alivio, Theodore E. G ; Arroyave, Raymundo ; Xie, Kelvin ; Pharr, Matt ; Mukherjee, Partha P ; Banerjee, Sarbajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-5ad0757e376688578aac758009c6df006165a37307f0ed1f5f8eb951e80f9ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Current density</topic><topic>Dendritic structure</topic><topic>Electrodeposition</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Fractals</topic><topic>Gravimetry</topic><topic>Image reconstruction</topic><topic>Magnesium</topic><topic>Mapping</topic><topic>Mats</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanowires</topic><topic>Optical density</topic><topic>Reagents</topic><topic>Selective surfaces</topic><topic>Separators</topic><topic>Shear modulus</topic><topic>Soft x rays</topic><topic>Tomography</topic><topic>X ray microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davidson, Rachel</creatorcontrib><creatorcontrib>Verma, Ankit</creatorcontrib><creatorcontrib>Santos, David</creatorcontrib><creatorcontrib>Hao, Feng</creatorcontrib><creatorcontrib>Fincher, Cole D</creatorcontrib><creatorcontrib>Zhao, Dexin</creatorcontrib><creatorcontrib>Attari, Vahid</creatorcontrib><creatorcontrib>Schofield, Parker</creatorcontrib><creatorcontrib>Van Buskirk, Jonathan</creatorcontrib><creatorcontrib>Fraticelli-Cartagena, Antonio</creatorcontrib><creatorcontrib>Alivio, Theodore E. G</creatorcontrib><creatorcontrib>Arroyave, Raymundo</creatorcontrib><creatorcontrib>Xie, Kelvin</creatorcontrib><creatorcontrib>Pharr, Matt</creatorcontrib><creatorcontrib>Mukherjee, Partha P</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davidson, Rachel</au><au>Verma, Ankit</au><au>Santos, David</au><au>Hao, Feng</au><au>Fincher, Cole D</au><au>Zhao, Dexin</au><au>Attari, Vahid</au><au>Schofield, Parker</au><au>Van Buskirk, Jonathan</au><au>Fraticelli-Cartagena, Antonio</au><au>Alivio, Theodore E. G</au><au>Arroyave, Raymundo</au><au>Xie, Kelvin</au><au>Pharr, Matt</au><au>Mukherjee, Partha P</au><au>Banerjee, Sarbajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities</atitle><jtitle>Materials horizons</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>843</spage><epage>854</epage><pages>843-854</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of 'beyond Li' battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg-Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination.
Galvanostatic electrodeposition from Grignard reagents in symmetric Mg-Mg cells is used to map Mg morphologies from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and entangled nanowire mats.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9mh01367a</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3347-3480</orcidid><orcidid>https://orcid.org/0000-0002-2028-4675</orcidid><orcidid>https://orcid.org/0000-0002-7610-8574</orcidid><orcidid>https://orcid.org/0000-0001-9522-8822</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-6347 |
ispartof | Materials horizons, 2020-01, Vol.7 (3), p.843-854 |
issn | 2051-6347 2051-6355 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9MH01367A |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Current density Dendritic structure Electrodeposition Electrolytes Electrolytic cells Fractals Gravimetry Image reconstruction Magnesium Mapping Mats Microscopy Morphology Nanowires Optical density Reagents Selective surfaces Separators Shear modulus Soft x rays Tomography X ray microscopy |
title | Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20mechanisms%20and%20growth%20regimes%20of%20magnesium%20electrodeposition%20at%20high%20current%20densities&rft.jtitle=Materials%20horizons&rft.au=Davidson,%20Rachel&rft.date=2020-01-01&rft.volume=7&rft.issue=3&rft.spage=843&rft.epage=854&rft.pages=843-854&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/c9mh01367a&rft_dat=%3Cproquest_cross%3E2374061012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374061012&rft_id=info:pmid/&rfr_iscdi=true |