Acid-catalyzed pyrolytic synthesis of levoglucosan through salt-mediated ring locking

Selectively producing chemicals from cellulosic carbohydrate pyrolysis in large quantities is challenging, especially anhydro-monosaccharides with double-ring, triple-ring, and furan/pyran structures. Formation of these sugar derivatives greatly improves when the pyranose ring opening is inhibited d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2020-03, Vol.22 (6), p.1968-1977
Hauptverfasser: Chen, Li, Elias, Welman C, Ben Yin, Y, Conrad Zhang, Z, Wong, Michael S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1977
container_issue 6
container_start_page 1968
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 22
creator Chen, Li
Elias, Welman C
Ben Yin, Y
Conrad Zhang, Z
Wong, Michael S
description Selectively producing chemicals from cellulosic carbohydrate pyrolysis in large quantities is challenging, especially anhydro-monosaccharides with double-ring, triple-ring, and furan/pyran structures. Formation of these sugar derivatives greatly improves when the pyranose ring opening is inhibited during pyrolysis, which is accomplished by chemically replacing the hydroxyl group at the anomeric carbon with an alkoxy group. A simpler ring-locking approach is required for scalable chemical production, however. In this work, we demonstrate that introducing Na 2 SO 4 and H 2 SO 4 to glucose pyrolysis significantly increases levoglucosan (LGA) formation, from a 6% yield to as high as 40% at 350 °C. With H 2 SO 4 as the acid catalyst, Na + acts to inhibit the ring opening. Glucose pyrolysis with different alkali metal cations (Li + , Na + , K + , Rb + and Cs + ) gives different reaction products, which can be explained largely by an ionic electronegativity effect. Weaker electronegativity promotes the formation of a ring-opened product such as 5-hydroxymethylfurfural (HMF), and stronger electronegativity increases the formation of sequential dehydration products like levoglucosenone (LGO). Sodium has the optimum ionic electronegativity for preferential association with the ring oxygen. The Na 2 SO 4 /H 2 SO 4 combination improved LGA yields for all carbohydrate substrates tested (up to 70%), including lignocellulose. These findings highlight the potential of using alkali metal salts to produce anhydrosugars in high yields from cellulosic carbohydrate pyrolysis. The combination of Na 2 SO 4 /H 2 SO 4 increases levoglucosan (LGA) yield from glucose pyrolysis from 6% to as high as 40%, as a result of sodium suppressing the opening of the glucose ring.
doi_str_mv 10.1039/c9gc03973b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9GC03973B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381542050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-d2482a1c63ede9dc1d4680538586f78df076ff186afccdea481e266ec8947bda3</originalsourceid><addsrcrecordid>eNp90MFLwzAUBvAgCs7pxbtQ8SZUkyZN0-MsOoWBF3cu2UvSdXZNTdJB_eutTubN0_cOv_cefAhdEnxHMM3vIa9gzIyujtCEME7jPMnw8WHmySk6836DMSEZZxO0nEGtYpBBNsOnVlE3ONsMoYbID21Ya1_7yJqo0TtbNT1YL9sorJ3tq3XkZRPirVa1DOOmq9sqaiy8j3mOToxsvL74zSlaPj2-Fc_x4nX-UswWMVDGQqwSJhJJgFOtdK6AKMYFTqlIBTeZUAZn3BgiuDQASksmiE441yBylq2UpFN0s7_bOfvRax_Kje1dO74sEypIyhKc4lHd7hU4673TpuxcvZVuKAkuv2sri3xe_NT2MOLrPXYeDu6v1rJTZjRX_xn6BYiOdqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381542050</pqid></control><display><type>article</type><title>Acid-catalyzed pyrolytic synthesis of levoglucosan through salt-mediated ring locking</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chen, Li ; Elias, Welman C ; Ben Yin, Y ; Conrad Zhang, Z ; Wong, Michael S</creator><creatorcontrib>Chen, Li ; Elias, Welman C ; Ben Yin, Y ; Conrad Zhang, Z ; Wong, Michael S</creatorcontrib><description>Selectively producing chemicals from cellulosic carbohydrate pyrolysis in large quantities is challenging, especially anhydro-monosaccharides with double-ring, triple-ring, and furan/pyran structures. Formation of these sugar derivatives greatly improves when the pyranose ring opening is inhibited during pyrolysis, which is accomplished by chemically replacing the hydroxyl group at the anomeric carbon with an alkoxy group. A simpler ring-locking approach is required for scalable chemical production, however. In this work, we demonstrate that introducing Na 2 SO 4 and H 2 SO 4 to glucose pyrolysis significantly increases levoglucosan (LGA) formation, from a 6% yield to as high as 40% at 350 °C. With H 2 SO 4 as the acid catalyst, Na + acts to inhibit the ring opening. Glucose pyrolysis with different alkali metal cations (Li + , Na + , K + , Rb + and Cs + ) gives different reaction products, which can be explained largely by an ionic electronegativity effect. Weaker electronegativity promotes the formation of a ring-opened product such as 5-hydroxymethylfurfural (HMF), and stronger electronegativity increases the formation of sequential dehydration products like levoglucosenone (LGO). Sodium has the optimum ionic electronegativity for preferential association with the ring oxygen. The Na 2 SO 4 /H 2 SO 4 combination improved LGA yields for all carbohydrate substrates tested (up to 70%), including lignocellulose. These findings highlight the potential of using alkali metal salts to produce anhydrosugars in high yields from cellulosic carbohydrate pyrolysis. The combination of Na 2 SO 4 /H 2 SO 4 increases levoglucosan (LGA) yield from glucose pyrolysis from 6% to as high as 40%, as a result of sodium suppressing the opening of the glucose ring.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/c9gc03973b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkali metals ; Carbohydrates ; Catalysts ; Cations ; Chemical synthesis ; Dehydration ; Electronegativity ; Glucose ; Green chemistry ; Hydroxyl groups ; Hydroxymethylfurfural ; Levoglucosan ; Lignocellulose ; Locking ; Metal ions ; Monosaccharides ; Pyrolysis ; Reaction products ; Ring opening ; Rubidium ; Salts ; Sodium sulfate ; Substrates ; Sulfuric acid ; Yield</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2020-03, Vol.22 (6), p.1968-1977</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-d2482a1c63ede9dc1d4680538586f78df076ff186afccdea481e266ec8947bda3</citedby><cites>FETCH-LOGICAL-c344t-d2482a1c63ede9dc1d4680538586f78df076ff186afccdea481e266ec8947bda3</cites><orcidid>0000-0002-3652-3378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Elias, Welman C</creatorcontrib><creatorcontrib>Ben Yin, Y</creatorcontrib><creatorcontrib>Conrad Zhang, Z</creatorcontrib><creatorcontrib>Wong, Michael S</creatorcontrib><title>Acid-catalyzed pyrolytic synthesis of levoglucosan through salt-mediated ring locking</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Selectively producing chemicals from cellulosic carbohydrate pyrolysis in large quantities is challenging, especially anhydro-monosaccharides with double-ring, triple-ring, and furan/pyran structures. Formation of these sugar derivatives greatly improves when the pyranose ring opening is inhibited during pyrolysis, which is accomplished by chemically replacing the hydroxyl group at the anomeric carbon with an alkoxy group. A simpler ring-locking approach is required for scalable chemical production, however. In this work, we demonstrate that introducing Na 2 SO 4 and H 2 SO 4 to glucose pyrolysis significantly increases levoglucosan (LGA) formation, from a 6% yield to as high as 40% at 350 °C. With H 2 SO 4 as the acid catalyst, Na + acts to inhibit the ring opening. Glucose pyrolysis with different alkali metal cations (Li + , Na + , K + , Rb + and Cs + ) gives different reaction products, which can be explained largely by an ionic electronegativity effect. Weaker electronegativity promotes the formation of a ring-opened product such as 5-hydroxymethylfurfural (HMF), and stronger electronegativity increases the formation of sequential dehydration products like levoglucosenone (LGO). Sodium has the optimum ionic electronegativity for preferential association with the ring oxygen. The Na 2 SO 4 /H 2 SO 4 combination improved LGA yields for all carbohydrate substrates tested (up to 70%), including lignocellulose. These findings highlight the potential of using alkali metal salts to produce anhydrosugars in high yields from cellulosic carbohydrate pyrolysis. The combination of Na 2 SO 4 /H 2 SO 4 increases levoglucosan (LGA) yield from glucose pyrolysis from 6% to as high as 40%, as a result of sodium suppressing the opening of the glucose ring.</description><subject>Alkali metals</subject><subject>Carbohydrates</subject><subject>Catalysts</subject><subject>Cations</subject><subject>Chemical synthesis</subject><subject>Dehydration</subject><subject>Electronegativity</subject><subject>Glucose</subject><subject>Green chemistry</subject><subject>Hydroxyl groups</subject><subject>Hydroxymethylfurfural</subject><subject>Levoglucosan</subject><subject>Lignocellulose</subject><subject>Locking</subject><subject>Metal ions</subject><subject>Monosaccharides</subject><subject>Pyrolysis</subject><subject>Reaction products</subject><subject>Ring opening</subject><subject>Rubidium</subject><subject>Salts</subject><subject>Sodium sulfate</subject><subject>Substrates</subject><subject>Sulfuric acid</subject><subject>Yield</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90MFLwzAUBvAgCs7pxbtQ8SZUkyZN0-MsOoWBF3cu2UvSdXZNTdJB_eutTubN0_cOv_cefAhdEnxHMM3vIa9gzIyujtCEME7jPMnw8WHmySk6836DMSEZZxO0nEGtYpBBNsOnVlE3ONsMoYbID21Ya1_7yJqo0TtbNT1YL9sorJ3tq3XkZRPirVa1DOOmq9sqaiy8j3mOToxsvL74zSlaPj2-Fc_x4nX-UswWMVDGQqwSJhJJgFOtdK6AKMYFTqlIBTeZUAZn3BgiuDQASksmiE441yBylq2UpFN0s7_bOfvRax_Kje1dO74sEypIyhKc4lHd7hU4673TpuxcvZVuKAkuv2sri3xe_NT2MOLrPXYeDu6v1rJTZjRX_xn6BYiOdqw</recordid><startdate>20200323</startdate><enddate>20200323</enddate><creator>Chen, Li</creator><creator>Elias, Welman C</creator><creator>Ben Yin, Y</creator><creator>Conrad Zhang, Z</creator><creator>Wong, Michael S</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3652-3378</orcidid></search><sort><creationdate>20200323</creationdate><title>Acid-catalyzed pyrolytic synthesis of levoglucosan through salt-mediated ring locking</title><author>Chen, Li ; Elias, Welman C ; Ben Yin, Y ; Conrad Zhang, Z ; Wong, Michael S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-d2482a1c63ede9dc1d4680538586f78df076ff186afccdea481e266ec8947bda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkali metals</topic><topic>Carbohydrates</topic><topic>Catalysts</topic><topic>Cations</topic><topic>Chemical synthesis</topic><topic>Dehydration</topic><topic>Electronegativity</topic><topic>Glucose</topic><topic>Green chemistry</topic><topic>Hydroxyl groups</topic><topic>Hydroxymethylfurfural</topic><topic>Levoglucosan</topic><topic>Lignocellulose</topic><topic>Locking</topic><topic>Metal ions</topic><topic>Monosaccharides</topic><topic>Pyrolysis</topic><topic>Reaction products</topic><topic>Ring opening</topic><topic>Rubidium</topic><topic>Salts</topic><topic>Sodium sulfate</topic><topic>Substrates</topic><topic>Sulfuric acid</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Elias, Welman C</creatorcontrib><creatorcontrib>Ben Yin, Y</creatorcontrib><creatorcontrib>Conrad Zhang, Z</creatorcontrib><creatorcontrib>Wong, Michael S</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Li</au><au>Elias, Welman C</au><au>Ben Yin, Y</au><au>Conrad Zhang, Z</au><au>Wong, Michael S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acid-catalyzed pyrolytic synthesis of levoglucosan through salt-mediated ring locking</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2020-03-23</date><risdate>2020</risdate><volume>22</volume><issue>6</issue><spage>1968</spage><epage>1977</epage><pages>1968-1977</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Selectively producing chemicals from cellulosic carbohydrate pyrolysis in large quantities is challenging, especially anhydro-monosaccharides with double-ring, triple-ring, and furan/pyran structures. Formation of these sugar derivatives greatly improves when the pyranose ring opening is inhibited during pyrolysis, which is accomplished by chemically replacing the hydroxyl group at the anomeric carbon with an alkoxy group. A simpler ring-locking approach is required for scalable chemical production, however. In this work, we demonstrate that introducing Na 2 SO 4 and H 2 SO 4 to glucose pyrolysis significantly increases levoglucosan (LGA) formation, from a 6% yield to as high as 40% at 350 °C. With H 2 SO 4 as the acid catalyst, Na + acts to inhibit the ring opening. Glucose pyrolysis with different alkali metal cations (Li + , Na + , K + , Rb + and Cs + ) gives different reaction products, which can be explained largely by an ionic electronegativity effect. Weaker electronegativity promotes the formation of a ring-opened product such as 5-hydroxymethylfurfural (HMF), and stronger electronegativity increases the formation of sequential dehydration products like levoglucosenone (LGO). Sodium has the optimum ionic electronegativity for preferential association with the ring oxygen. The Na 2 SO 4 /H 2 SO 4 combination improved LGA yields for all carbohydrate substrates tested (up to 70%), including lignocellulose. These findings highlight the potential of using alkali metal salts to produce anhydrosugars in high yields from cellulosic carbohydrate pyrolysis. The combination of Na 2 SO 4 /H 2 SO 4 increases levoglucosan (LGA) yield from glucose pyrolysis from 6% to as high as 40%, as a result of sodium suppressing the opening of the glucose ring.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9gc03973b</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3652-3378</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2020-03, Vol.22 (6), p.1968-1977
issn 1463-9262
1463-9270
language eng
recordid cdi_crossref_primary_10_1039_C9GC03973B
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Alkali metals
Carbohydrates
Catalysts
Cations
Chemical synthesis
Dehydration
Electronegativity
Glucose
Green chemistry
Hydroxyl groups
Hydroxymethylfurfural
Levoglucosan
Lignocellulose
Locking
Metal ions
Monosaccharides
Pyrolysis
Reaction products
Ring opening
Rubidium
Salts
Sodium sulfate
Substrates
Sulfuric acid
Yield
title Acid-catalyzed pyrolytic synthesis of levoglucosan through salt-mediated ring locking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acid-catalyzed%20pyrolytic%20synthesis%20of%20levoglucosan%20through%20salt-mediated%20ring%20locking&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Chen,%20Li&rft.date=2020-03-23&rft.volume=22&rft.issue=6&rft.spage=1968&rft.epage=1977&rft.pages=1968-1977&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/c9gc03973b&rft_dat=%3Cproquest_cross%3E2381542050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381542050&rft_id=info:pmid/&rfr_iscdi=true