Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching

A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2019, Vol.21 (24), p.66-665
Hauptverfasser: Huang, Yunping, Liu, Yun, Sommerville, Parker J. W, Kaminsky, Werner, Ginger, David S, Luscombe, Christine K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 665
container_issue 24
container_start_page 66
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 21
creator Huang, Yunping
Liu, Yun
Sommerville, Parker J. W
Kaminsky, Werner
Ginger, David S
Luscombe, Christine K
description A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in solution and as aggregates. The minimized ACQ can be ascribed to the large dihedral angles that theobromine moieties introduce into these molecules, preventing interactions between the luminophores. Furthermore, the large dihedral angles promote the formation of hybridized local and charge-transfer states in these molecules. Finally, amplified spontaneous emission measurements were performed to explore their potential in lasers. Green chemistry and a natural product together provide a cost-effective, safe and scalable solution to create luminophores with suppressed aggregation quenching in organic semiconductors.
doi_str_mv 10.1039/c9gc03391b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9GC03391B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323084665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-bfd9719cf49924dfe89aaa96515c94f73f774ae6a2cf5e3c8a10afc3f8664173</originalsourceid><addsrcrecordid>eNpF0EFLwzAUB_AgCs7pxbsQ8CZUkyZNG29adAoDL7uX1zTpMrpkJu1BP_26Vebp5cEv7_H-CN1S8kgJk09KtoowJml9hmaUC5bINCfnp7dIL9FVjBtCKM0FnyG3WmtfB7-1TmNwDW5s0KrHEH466K13zxhwHGIP1kHdTSYq6I5N9N1wQLj3eJxgt_Z3FG0bdHv8jBUMUTf4e9BOra1rr9GFgS7qm786R6v3t1X5kSy_Fp_lyzJRjBZ9UptG5lQqw6VMeWN0IQFAioxmSnKTM5PnHLSAVJlMM1UAJWAUM4UQnOZsju6nsbvgx92xrzZ-CG7cWKUsZaTgQmSjepiUCj7GoE21C3Y7Xl5RUh3irEq5KI9xvo74bsIhqpP7j5vtAXzZc-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323084665</pqid></control><display><type>article</type><title>Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Huang, Yunping ; Liu, Yun ; Sommerville, Parker J. W ; Kaminsky, Werner ; Ginger, David S ; Luscombe, Christine K</creator><creatorcontrib>Huang, Yunping ; Liu, Yun ; Sommerville, Parker J. W ; Kaminsky, Werner ; Ginger, David S ; Luscombe, Christine K</creatorcontrib><description>A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in solution and as aggregates. The minimized ACQ can be ascribed to the large dihedral angles that theobromine moieties introduce into these molecules, preventing interactions between the luminophores. Furthermore, the large dihedral angles promote the formation of hybridized local and charge-transfer states in these molecules. Finally, amplified spontaneous emission measurements were performed to explore their potential in lasers. Green chemistry and a natural product together provide a cost-effective, safe and scalable solution to create luminophores with suppressed aggregation quenching in organic semiconductors.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/c9gc03391b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Agglomeration ; Alkylation ; Charge transfer ; Crystallography ; Emission measurements ; Green chemistry ; Lasers ; Photoluminescence ; Photons ; Quenching ; Spontaneous emission</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2019, Vol.21 (24), p.66-665</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-bfd9719cf49924dfe89aaa96515c94f73f774ae6a2cf5e3c8a10afc3f8664173</citedby><cites>FETCH-LOGICAL-c318t-bfd9719cf49924dfe89aaa96515c94f73f774ae6a2cf5e3c8a10afc3f8664173</cites><orcidid>0000-0002-9100-4909 ; 0000-0003-0699-4272 ; 0000-0001-7456-1343 ; 0000-0001-8461-7160 ; 0000-0003-2312-5853 ; 0000-0002-9759-5447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Huang, Yunping</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Sommerville, Parker J. W</creatorcontrib><creatorcontrib>Kaminsky, Werner</creatorcontrib><creatorcontrib>Ginger, David S</creatorcontrib><creatorcontrib>Luscombe, Christine K</creatorcontrib><title>Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in solution and as aggregates. The minimized ACQ can be ascribed to the large dihedral angles that theobromine moieties introduce into these molecules, preventing interactions between the luminophores. Furthermore, the large dihedral angles promote the formation of hybridized local and charge-transfer states in these molecules. Finally, amplified spontaneous emission measurements were performed to explore their potential in lasers. Green chemistry and a natural product together provide a cost-effective, safe and scalable solution to create luminophores with suppressed aggregation quenching in organic semiconductors.</description><subject>Agglomeration</subject><subject>Alkylation</subject><subject>Charge transfer</subject><subject>Crystallography</subject><subject>Emission measurements</subject><subject>Green chemistry</subject><subject>Lasers</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Quenching</subject><subject>Spontaneous emission</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpF0EFLwzAUB_AgCs7pxbsQ8CZUkyZNG29adAoDL7uX1zTpMrpkJu1BP_26Vebp5cEv7_H-CN1S8kgJk09KtoowJml9hmaUC5bINCfnp7dIL9FVjBtCKM0FnyG3WmtfB7-1TmNwDW5s0KrHEH466K13zxhwHGIP1kHdTSYq6I5N9N1wQLj3eJxgt_Z3FG0bdHv8jBUMUTf4e9BOra1rr9GFgS7qm786R6v3t1X5kSy_Fp_lyzJRjBZ9UptG5lQqw6VMeWN0IQFAioxmSnKTM5PnHLSAVJlMM1UAJWAUM4UQnOZsju6nsbvgx92xrzZ-CG7cWKUsZaTgQmSjepiUCj7GoE21C3Y7Xl5RUh3irEq5KI9xvo74bsIhqpP7j5vtAXzZc-A</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Huang, Yunping</creator><creator>Liu, Yun</creator><creator>Sommerville, Parker J. W</creator><creator>Kaminsky, Werner</creator><creator>Ginger, David S</creator><creator>Luscombe, Christine K</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9100-4909</orcidid><orcidid>https://orcid.org/0000-0003-0699-4272</orcidid><orcidid>https://orcid.org/0000-0001-7456-1343</orcidid><orcidid>https://orcid.org/0000-0001-8461-7160</orcidid><orcidid>https://orcid.org/0000-0003-2312-5853</orcidid><orcidid>https://orcid.org/0000-0002-9759-5447</orcidid></search><sort><creationdate>2019</creationdate><title>Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching</title><author>Huang, Yunping ; Liu, Yun ; Sommerville, Parker J. W ; Kaminsky, Werner ; Ginger, David S ; Luscombe, Christine K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-bfd9719cf49924dfe89aaa96515c94f73f774ae6a2cf5e3c8a10afc3f8664173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agglomeration</topic><topic>Alkylation</topic><topic>Charge transfer</topic><topic>Crystallography</topic><topic>Emission measurements</topic><topic>Green chemistry</topic><topic>Lasers</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Quenching</topic><topic>Spontaneous emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yunping</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Sommerville, Parker J. W</creatorcontrib><creatorcontrib>Kaminsky, Werner</creatorcontrib><creatorcontrib>Ginger, David S</creatorcontrib><creatorcontrib>Luscombe, Christine K</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yunping</au><au>Liu, Yun</au><au>Sommerville, Parker J. W</au><au>Kaminsky, Werner</au><au>Ginger, David S</au><au>Luscombe, Christine K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>24</issue><spage>66</spage><epage>665</epage><pages>66-665</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in solution and as aggregates. The minimized ACQ can be ascribed to the large dihedral angles that theobromine moieties introduce into these molecules, preventing interactions between the luminophores. Furthermore, the large dihedral angles promote the formation of hybridized local and charge-transfer states in these molecules. Finally, amplified spontaneous emission measurements were performed to explore their potential in lasers. Green chemistry and a natural product together provide a cost-effective, safe and scalable solution to create luminophores with suppressed aggregation quenching in organic semiconductors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9gc03391b</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9100-4909</orcidid><orcidid>https://orcid.org/0000-0003-0699-4272</orcidid><orcidid>https://orcid.org/0000-0001-7456-1343</orcidid><orcidid>https://orcid.org/0000-0001-8461-7160</orcidid><orcidid>https://orcid.org/0000-0003-2312-5853</orcidid><orcidid>https://orcid.org/0000-0002-9759-5447</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2019, Vol.21 (24), p.66-665
issn 1463-9262
1463-9270
language eng
recordid cdi_crossref_primary_10_1039_C9GC03391B
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Agglomeration
Alkylation
Charge transfer
Crystallography
Emission measurements
Green chemistry
Lasers
Photoluminescence
Photons
Quenching
Spontaneous emission
title Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theobromine%20and%20direct%20arylation:%20a%20sustainable%20and%20scalable%20solution%20to%20minimize%20aggregation%20caused%20quenching&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Huang,%20Yunping&rft.date=2019&rft.volume=21&rft.issue=24&rft.spage=66&rft.epage=665&rft.pages=66-665&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/c9gc03391b&rft_dat=%3Cproquest_cross%3E2323084665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323084665&rft_id=info:pmid/&rfr_iscdi=true