Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching
A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2019, Vol.21 (24), p.66-665 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 665 |
---|---|
container_issue | 24 |
container_start_page | 66 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 21 |
creator | Huang, Yunping Liu, Yun Sommerville, Parker J. W Kaminsky, Werner Ginger, David S Luscombe, Christine K |
description | A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in solution and as aggregates. The minimized ACQ can be ascribed to the large dihedral angles that theobromine moieties introduce into these molecules, preventing interactions between the luminophores. Furthermore, the large dihedral angles promote the formation of hybridized local and charge-transfer states in these molecules. Finally, amplified spontaneous emission measurements were performed to explore their potential in lasers.
Green chemistry and a natural product together provide a cost-effective, safe and scalable solution to create luminophores with suppressed aggregation quenching in organic semiconductors. |
doi_str_mv | 10.1039/c9gc03391b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9GC03391B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323084665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-bfd9719cf49924dfe89aaa96515c94f73f774ae6a2cf5e3c8a10afc3f8664173</originalsourceid><addsrcrecordid>eNpF0EFLwzAUB_AgCs7pxbsQ8CZUkyZNG29adAoDL7uX1zTpMrpkJu1BP_26Vebp5cEv7_H-CN1S8kgJk09KtoowJml9hmaUC5bINCfnp7dIL9FVjBtCKM0FnyG3WmtfB7-1TmNwDW5s0KrHEH466K13zxhwHGIP1kHdTSYq6I5N9N1wQLj3eJxgt_Z3FG0bdHv8jBUMUTf4e9BOra1rr9GFgS7qm786R6v3t1X5kSy_Fp_lyzJRjBZ9UptG5lQqw6VMeWN0IQFAioxmSnKTM5PnHLSAVJlMM1UAJWAUM4UQnOZsju6nsbvgx92xrzZ-CG7cWKUsZaTgQmSjepiUCj7GoE21C3Y7Xl5RUh3irEq5KI9xvo74bsIhqpP7j5vtAXzZc-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323084665</pqid></control><display><type>article</type><title>Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Huang, Yunping ; Liu, Yun ; Sommerville, Parker J. W ; Kaminsky, Werner ; Ginger, David S ; Luscombe, Christine K</creator><creatorcontrib>Huang, Yunping ; Liu, Yun ; Sommerville, Parker J. W ; Kaminsky, Werner ; Ginger, David S ; Luscombe, Christine K</creatorcontrib><description>A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in solution and as aggregates. The minimized ACQ can be ascribed to the large dihedral angles that theobromine moieties introduce into these molecules, preventing interactions between the luminophores. Furthermore, the large dihedral angles promote the formation of hybridized local and charge-transfer states in these molecules. Finally, amplified spontaneous emission measurements were performed to explore their potential in lasers.
Green chemistry and a natural product together provide a cost-effective, safe and scalable solution to create luminophores with suppressed aggregation quenching in organic semiconductors.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/c9gc03391b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Agglomeration ; Alkylation ; Charge transfer ; Crystallography ; Emission measurements ; Green chemistry ; Lasers ; Photoluminescence ; Photons ; Quenching ; Spontaneous emission</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2019, Vol.21 (24), p.66-665</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-bfd9719cf49924dfe89aaa96515c94f73f774ae6a2cf5e3c8a10afc3f8664173</citedby><cites>FETCH-LOGICAL-c318t-bfd9719cf49924dfe89aaa96515c94f73f774ae6a2cf5e3c8a10afc3f8664173</cites><orcidid>0000-0002-9100-4909 ; 0000-0003-0699-4272 ; 0000-0001-7456-1343 ; 0000-0001-8461-7160 ; 0000-0003-2312-5853 ; 0000-0002-9759-5447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Huang, Yunping</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Sommerville, Parker J. W</creatorcontrib><creatorcontrib>Kaminsky, Werner</creatorcontrib><creatorcontrib>Ginger, David S</creatorcontrib><creatorcontrib>Luscombe, Christine K</creatorcontrib><title>Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in solution and as aggregates. The minimized ACQ can be ascribed to the large dihedral angles that theobromine moieties introduce into these molecules, preventing interactions between the luminophores. Furthermore, the large dihedral angles promote the formation of hybridized local and charge-transfer states in these molecules. Finally, amplified spontaneous emission measurements were performed to explore their potential in lasers.
Green chemistry and a natural product together provide a cost-effective, safe and scalable solution to create luminophores with suppressed aggregation quenching in organic semiconductors.</description><subject>Agglomeration</subject><subject>Alkylation</subject><subject>Charge transfer</subject><subject>Crystallography</subject><subject>Emission measurements</subject><subject>Green chemistry</subject><subject>Lasers</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Quenching</subject><subject>Spontaneous emission</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpF0EFLwzAUB_AgCs7pxbsQ8CZUkyZNG29adAoDL7uX1zTpMrpkJu1BP_26Vebp5cEv7_H-CN1S8kgJk09KtoowJml9hmaUC5bINCfnp7dIL9FVjBtCKM0FnyG3WmtfB7-1TmNwDW5s0KrHEH466K13zxhwHGIP1kHdTSYq6I5N9N1wQLj3eJxgt_Z3FG0bdHv8jBUMUTf4e9BOra1rr9GFgS7qm786R6v3t1X5kSy_Fp_lyzJRjBZ9UptG5lQqw6VMeWN0IQFAioxmSnKTM5PnHLSAVJlMM1UAJWAUM4UQnOZsju6nsbvgx92xrzZ-CG7cWKUsZaTgQmSjepiUCj7GoE21C3Y7Xl5RUh3irEq5KI9xvo74bsIhqpP7j5vtAXzZc-A</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Huang, Yunping</creator><creator>Liu, Yun</creator><creator>Sommerville, Parker J. W</creator><creator>Kaminsky, Werner</creator><creator>Ginger, David S</creator><creator>Luscombe, Christine K</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9100-4909</orcidid><orcidid>https://orcid.org/0000-0003-0699-4272</orcidid><orcidid>https://orcid.org/0000-0001-7456-1343</orcidid><orcidid>https://orcid.org/0000-0001-8461-7160</orcidid><orcidid>https://orcid.org/0000-0003-2312-5853</orcidid><orcidid>https://orcid.org/0000-0002-9759-5447</orcidid></search><sort><creationdate>2019</creationdate><title>Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching</title><author>Huang, Yunping ; Liu, Yun ; Sommerville, Parker J. W ; Kaminsky, Werner ; Ginger, David S ; Luscombe, Christine K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-bfd9719cf49924dfe89aaa96515c94f73f774ae6a2cf5e3c8a10afc3f8664173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agglomeration</topic><topic>Alkylation</topic><topic>Charge transfer</topic><topic>Crystallography</topic><topic>Emission measurements</topic><topic>Green chemistry</topic><topic>Lasers</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Quenching</topic><topic>Spontaneous emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yunping</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Sommerville, Parker J. W</creatorcontrib><creatorcontrib>Kaminsky, Werner</creatorcontrib><creatorcontrib>Ginger, David S</creatorcontrib><creatorcontrib>Luscombe, Christine K</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yunping</au><au>Liu, Yun</au><au>Sommerville, Parker J. W</au><au>Kaminsky, Werner</au><au>Ginger, David S</au><au>Luscombe, Christine K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>24</issue><spage>66</spage><epage>665</epage><pages>66-665</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in solution and as aggregates. The minimized ACQ can be ascribed to the large dihedral angles that theobromine moieties introduce into these molecules, preventing interactions between the luminophores. Furthermore, the large dihedral angles promote the formation of hybridized local and charge-transfer states in these molecules. Finally, amplified spontaneous emission measurements were performed to explore their potential in lasers.
Green chemistry and a natural product together provide a cost-effective, safe and scalable solution to create luminophores with suppressed aggregation quenching in organic semiconductors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9gc03391b</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9100-4909</orcidid><orcidid>https://orcid.org/0000-0003-0699-4272</orcidid><orcidid>https://orcid.org/0000-0001-7456-1343</orcidid><orcidid>https://orcid.org/0000-0001-8461-7160</orcidid><orcidid>https://orcid.org/0000-0003-2312-5853</orcidid><orcidid>https://orcid.org/0000-0002-9759-5447</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2019, Vol.21 (24), p.66-665 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9GC03391B |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Agglomeration Alkylation Charge transfer Crystallography Emission measurements Green chemistry Lasers Photoluminescence Photons Quenching Spontaneous emission |
title | Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theobromine%20and%20direct%20arylation:%20a%20sustainable%20and%20scalable%20solution%20to%20minimize%20aggregation%20caused%20quenching&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Huang,%20Yunping&rft.date=2019&rft.volume=21&rft.issue=24&rft.spage=66&rft.epage=665&rft.pages=66-665&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/c9gc03391b&rft_dat=%3Cproquest_cross%3E2323084665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323084665&rft_id=info:pmid/&rfr_iscdi=true |