DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress

Acute gouty inflammation could be triggered by phagocytosis of monosodium urate (MSU) by immune cells. This study investigated the protective effect and underlying mechanism of docosahexaenoic acid (DHA) on MSU-induced inflammation in vitro and in vivo . Results showed that DHA effectively inhibited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food & function 2019-07, Vol.1 (7), p.41-421
Hauptverfasser: Zhang, Yue, Liu, Lu, Sun, Dongzhe, He, Yongjing, Jiang, Yue, Cheng, Ka-Wing, Chen, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue 7
container_start_page 41
container_title Food & function
container_volume 1
creator Zhang, Yue
Liu, Lu
Sun, Dongzhe
He, Yongjing
Jiang, Yue
Cheng, Ka-Wing
Chen, Feng
description Acute gouty inflammation could be triggered by phagocytosis of monosodium urate (MSU) by immune cells. This study investigated the protective effect and underlying mechanism of docosahexaenoic acid (DHA) on MSU-induced inflammation in vitro and in vivo . Results showed that DHA effectively inhibited MSU-induced expression and secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in THP-1 cells. Intracellular reactive oxygen species (ROS) production triggered by MSU was alleviated by DHA treatment. Furthermore, DHA promoted the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), wherein Nrf2 further mediated the expression of multiple antioxidant enzymes such as, heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase-1 (NQO1) and catalase, which are closely related with redox homeostasis. DHA treatment also restored MSU-induced impairment of mitochondrial transmembrane potential. In addition, oral administration of DHA-rich microalgal oil to C57BL/6 mice effectively reduced the infiltration of neutrophils, and decreased the expression and secretion of inflammatory cytokines. Altogether, our results suggest that DHA or DHA-rich microalgal oil may be a promising natural agent for the prevention of MSU-induced inflammation and potentially acute gout at least partly by attenuating oxidative stress. DHA and DHA-rich microalgal oil protect against monosodium urate-induced inflammation via regulating oxidative stress and inhibiting NLRP3-mediated inflammatory cytokine secretion.
doi_str_mv 10.1039/c9fo00573k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9FO00573K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243489703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-ea1cbe608f2d34cbe5dc8893637192a9c84009e46dd206b4d31e489ad1bbb9b83</originalsourceid><addsrcrecordid>eNpdkc9LwzAUx4MobsxdvCsFLyJUkyZtk-OYzomDXRS8lTRJt862mfkh-t-buR-C75L38j7vy8s3AJwjeIsgZneCVRrCNMfvR6CfQJLEWQrfjvc5YVkPDK1dwRCYMcroKehhlCCS5bAP-P10FK2Ndko4G_EFrzvrolZ32mpZ-zbyhjsV1530Qsmo7qqGty13te4itzTaL5aBlr7ZXukq0l-1DMWniqwzytozcFLxxqrh7hyA18nDy3gaz-aPT-PRLBY4py5WHIlSZZBWicQkpKkUlDKc4RyxhDNBCYRMkUzKBGYlkRgpQhmXqCxLVlI8ANdb3fCaD6-sK9raCtU0vFPa2yJJCA4DOcQBvfqHrrQ3XdguUCnNc5pmG8GbLSWMttaoqlibuuXmu0Cw2HhfjNlk_uv9c4Avd5K-bJU8oHunA3CxBYwVh-7f5-EfI3aJzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258778568</pqid></control><display><type>article</type><title>DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhang, Yue ; Liu, Lu ; Sun, Dongzhe ; He, Yongjing ; Jiang, Yue ; Cheng, Ka-Wing ; Chen, Feng</creator><creatorcontrib>Zhang, Yue ; Liu, Lu ; Sun, Dongzhe ; He, Yongjing ; Jiang, Yue ; Cheng, Ka-Wing ; Chen, Feng</creatorcontrib><description>Acute gouty inflammation could be triggered by phagocytosis of monosodium urate (MSU) by immune cells. This study investigated the protective effect and underlying mechanism of docosahexaenoic acid (DHA) on MSU-induced inflammation in vitro and in vivo . Results showed that DHA effectively inhibited MSU-induced expression and secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in THP-1 cells. Intracellular reactive oxygen species (ROS) production triggered by MSU was alleviated by DHA treatment. Furthermore, DHA promoted the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), wherein Nrf2 further mediated the expression of multiple antioxidant enzymes such as, heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase-1 (NQO1) and catalase, which are closely related with redox homeostasis. DHA treatment also restored MSU-induced impairment of mitochondrial transmembrane potential. In addition, oral administration of DHA-rich microalgal oil to C57BL/6 mice effectively reduced the infiltration of neutrophils, and decreased the expression and secretion of inflammatory cytokines. Altogether, our results suggest that DHA or DHA-rich microalgal oil may be a promising natural agent for the prevention of MSU-induced inflammation and potentially acute gout at least partly by attenuating oxidative stress. DHA and DHA-rich microalgal oil protect against monosodium urate-induced inflammation via regulating oxidative stress and inhibiting NLRP3-mediated inflammatory cytokine secretion.</description><identifier>ISSN: 2042-6496</identifier><identifier>EISSN: 2042-650X</identifier><identifier>DOI: 10.1039/c9fo00573k</identifier><identifier>PMID: 31214670</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Antioxidants ; Antioxidants - pharmacology ; Catalase ; Catalase - metabolism ; Cell Survival - drug effects ; Cytokines ; Cytokines - metabolism ; Docosahexaenoic acid ; Docosahexaenoic Acids - pharmacology ; Docosahexaenoic Acids - therapeutic use ; Gout ; Heme ; Heme oxygenase (decyclizing) ; Heme Oxygenase-1 - metabolism ; Homeostasis ; Homeostasis - drug effects ; Humans ; IL-1β ; Immune system ; Infiltration ; Inflammation ; Inflammation - chemically induced ; Inflammation - drug therapy ; Inflammation - immunology ; Interleukin-1beta - metabolism ; Interleukins ; Leukocytes (neutrophilic) ; Male ; Membrane potential ; Membrane Potential, Mitochondrial ; Metastases ; Mice ; Mice, Inbred C57BL ; Microalgae ; Mitochondria ; NAD ; NAD(P)H Dehydrogenase (Quinone) - metabolism ; Neutrophils - drug effects ; NF-E2-Related Factor 2 - metabolism ; Nuclear transport ; Oral administration ; Oxidative stress ; Oxidative Stress - drug effects ; Oxygenase ; Phagocytosis ; Protective Agents - pharmacology ; Quinone oxidoreductase ; Quinones ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; THP-1 Cells ; Translocation ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α ; Uric acid ; Uric Acid - adverse effects</subject><ispartof>Food &amp; function, 2019-07, Vol.1 (7), p.41-421</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-ea1cbe608f2d34cbe5dc8893637192a9c84009e46dd206b4d31e489ad1bbb9b83</citedby><cites>FETCH-LOGICAL-c378t-ea1cbe608f2d34cbe5dc8893637192a9c84009e46dd206b4d31e489ad1bbb9b83</cites><orcidid>0000-0001-8056-0953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31214670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Sun, Dongzhe</creatorcontrib><creatorcontrib>He, Yongjing</creatorcontrib><creatorcontrib>Jiang, Yue</creatorcontrib><creatorcontrib>Cheng, Ka-Wing</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress</title><title>Food &amp; function</title><addtitle>Food Funct</addtitle><description>Acute gouty inflammation could be triggered by phagocytosis of monosodium urate (MSU) by immune cells. This study investigated the protective effect and underlying mechanism of docosahexaenoic acid (DHA) on MSU-induced inflammation in vitro and in vivo . Results showed that DHA effectively inhibited MSU-induced expression and secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in THP-1 cells. Intracellular reactive oxygen species (ROS) production triggered by MSU was alleviated by DHA treatment. Furthermore, DHA promoted the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), wherein Nrf2 further mediated the expression of multiple antioxidant enzymes such as, heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase-1 (NQO1) and catalase, which are closely related with redox homeostasis. DHA treatment also restored MSU-induced impairment of mitochondrial transmembrane potential. In addition, oral administration of DHA-rich microalgal oil to C57BL/6 mice effectively reduced the infiltration of neutrophils, and decreased the expression and secretion of inflammatory cytokines. Altogether, our results suggest that DHA or DHA-rich microalgal oil may be a promising natural agent for the prevention of MSU-induced inflammation and potentially acute gout at least partly by attenuating oxidative stress. DHA and DHA-rich microalgal oil protect against monosodium urate-induced inflammation via regulating oxidative stress and inhibiting NLRP3-mediated inflammatory cytokine secretion.</description><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - pharmacology</subject><subject>Catalase</subject><subject>Catalase - metabolism</subject><subject>Cell Survival - drug effects</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Docosahexaenoic acid</subject><subject>Docosahexaenoic Acids - pharmacology</subject><subject>Docosahexaenoic Acids - therapeutic use</subject><subject>Gout</subject><subject>Heme</subject><subject>Heme oxygenase (decyclizing)</subject><subject>Heme Oxygenase-1 - metabolism</subject><subject>Homeostasis</subject><subject>Homeostasis - drug effects</subject><subject>Humans</subject><subject>IL-1β</subject><subject>Immune system</subject><subject>Infiltration</subject><subject>Inflammation</subject><subject>Inflammation - chemically induced</subject><subject>Inflammation - drug therapy</subject><subject>Inflammation - immunology</subject><subject>Interleukin-1beta - metabolism</subject><subject>Interleukins</subject><subject>Leukocytes (neutrophilic)</subject><subject>Male</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Metastases</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microalgae</subject><subject>Mitochondria</subject><subject>NAD</subject><subject>NAD(P)H Dehydrogenase (Quinone) - metabolism</subject><subject>Neutrophils - drug effects</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Nuclear transport</subject><subject>Oral administration</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxygenase</subject><subject>Phagocytosis</subject><subject>Protective Agents - pharmacology</subject><subject>Quinone oxidoreductase</subject><subject>Quinones</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>THP-1 Cells</subject><subject>Translocation</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><subject>Uric acid</subject><subject>Uric Acid - adverse effects</subject><issn>2042-6496</issn><issn>2042-650X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9LwzAUx4MobsxdvCsFLyJUkyZtk-OYzomDXRS8lTRJt862mfkh-t-buR-C75L38j7vy8s3AJwjeIsgZneCVRrCNMfvR6CfQJLEWQrfjvc5YVkPDK1dwRCYMcroKehhlCCS5bAP-P10FK2Ndko4G_EFrzvrolZ32mpZ-zbyhjsV1530Qsmo7qqGty13te4itzTaL5aBlr7ZXukq0l-1DMWniqwzytozcFLxxqrh7hyA18nDy3gaz-aPT-PRLBY4py5WHIlSZZBWicQkpKkUlDKc4RyxhDNBCYRMkUzKBGYlkRgpQhmXqCxLVlI8ANdb3fCaD6-sK9raCtU0vFPa2yJJCA4DOcQBvfqHrrQ3XdguUCnNc5pmG8GbLSWMttaoqlibuuXmu0Cw2HhfjNlk_uv9c4Avd5K-bJU8oHunA3CxBYwVh-7f5-EfI3aJzw</recordid><startdate>20190717</startdate><enddate>20190717</enddate><creator>Zhang, Yue</creator><creator>Liu, Lu</creator><creator>Sun, Dongzhe</creator><creator>He, Yongjing</creator><creator>Jiang, Yue</creator><creator>Cheng, Ka-Wing</creator><creator>Chen, Feng</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7T7</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8056-0953</orcidid></search><sort><creationdate>20190717</creationdate><title>DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress</title><author>Zhang, Yue ; Liu, Lu ; Sun, Dongzhe ; He, Yongjing ; Jiang, Yue ; Cheng, Ka-Wing ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-ea1cbe608f2d34cbe5dc8893637192a9c84009e46dd206b4d31e489ad1bbb9b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - pharmacology</topic><topic>Catalase</topic><topic>Catalase - metabolism</topic><topic>Cell Survival - drug effects</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Docosahexaenoic acid</topic><topic>Docosahexaenoic Acids - pharmacology</topic><topic>Docosahexaenoic Acids - therapeutic use</topic><topic>Gout</topic><topic>Heme</topic><topic>Heme oxygenase (decyclizing)</topic><topic>Heme Oxygenase-1 - metabolism</topic><topic>Homeostasis</topic><topic>Homeostasis - drug effects</topic><topic>Humans</topic><topic>IL-1β</topic><topic>Immune system</topic><topic>Infiltration</topic><topic>Inflammation</topic><topic>Inflammation - chemically induced</topic><topic>Inflammation - drug therapy</topic><topic>Inflammation - immunology</topic><topic>Interleukin-1beta - metabolism</topic><topic>Interleukins</topic><topic>Leukocytes (neutrophilic)</topic><topic>Male</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Metastases</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microalgae</topic><topic>Mitochondria</topic><topic>NAD</topic><topic>NAD(P)H Dehydrogenase (Quinone) - metabolism</topic><topic>Neutrophils - drug effects</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Nuclear transport</topic><topic>Oral administration</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxygenase</topic><topic>Phagocytosis</topic><topic>Protective Agents - pharmacology</topic><topic>Quinone oxidoreductase</topic><topic>Quinones</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>THP-1 Cells</topic><topic>Translocation</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><topic>Uric acid</topic><topic>Uric Acid - adverse effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Sun, Dongzhe</creatorcontrib><creatorcontrib>He, Yongjing</creatorcontrib><creatorcontrib>Jiang, Yue</creatorcontrib><creatorcontrib>Cheng, Ka-Wing</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Food &amp; function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yue</au><au>Liu, Lu</au><au>Sun, Dongzhe</au><au>He, Yongjing</au><au>Jiang, Yue</au><au>Cheng, Ka-Wing</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress</atitle><jtitle>Food &amp; function</jtitle><addtitle>Food Funct</addtitle><date>2019-07-17</date><risdate>2019</risdate><volume>1</volume><issue>7</issue><spage>41</spage><epage>421</epage><pages>41-421</pages><issn>2042-6496</issn><eissn>2042-650X</eissn><abstract>Acute gouty inflammation could be triggered by phagocytosis of monosodium urate (MSU) by immune cells. This study investigated the protective effect and underlying mechanism of docosahexaenoic acid (DHA) on MSU-induced inflammation in vitro and in vivo . Results showed that DHA effectively inhibited MSU-induced expression and secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in THP-1 cells. Intracellular reactive oxygen species (ROS) production triggered by MSU was alleviated by DHA treatment. Furthermore, DHA promoted the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), wherein Nrf2 further mediated the expression of multiple antioxidant enzymes such as, heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase-1 (NQO1) and catalase, which are closely related with redox homeostasis. DHA treatment also restored MSU-induced impairment of mitochondrial transmembrane potential. In addition, oral administration of DHA-rich microalgal oil to C57BL/6 mice effectively reduced the infiltration of neutrophils, and decreased the expression and secretion of inflammatory cytokines. Altogether, our results suggest that DHA or DHA-rich microalgal oil may be a promising natural agent for the prevention of MSU-induced inflammation and potentially acute gout at least partly by attenuating oxidative stress. DHA and DHA-rich microalgal oil protect against monosodium urate-induced inflammation via regulating oxidative stress and inhibiting NLRP3-mediated inflammatory cytokine secretion.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31214670</pmid><doi>10.1039/c9fo00573k</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8056-0953</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2042-6496
ispartof Food & function, 2019-07, Vol.1 (7), p.41-421
issn 2042-6496
2042-650X
language eng
recordid cdi_crossref_primary_10_1039_C9FO00573K
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Animals
Antioxidants
Antioxidants - pharmacology
Catalase
Catalase - metabolism
Cell Survival - drug effects
Cytokines
Cytokines - metabolism
Docosahexaenoic acid
Docosahexaenoic Acids - pharmacology
Docosahexaenoic Acids - therapeutic use
Gout
Heme
Heme oxygenase (decyclizing)
Heme Oxygenase-1 - metabolism
Homeostasis
Homeostasis - drug effects
Humans
IL-1β
Immune system
Infiltration
Inflammation
Inflammation - chemically induced
Inflammation - drug therapy
Inflammation - immunology
Interleukin-1beta - metabolism
Interleukins
Leukocytes (neutrophilic)
Male
Membrane potential
Membrane Potential, Mitochondrial
Metastases
Mice
Mice, Inbred C57BL
Microalgae
Mitochondria
NAD
NAD(P)H Dehydrogenase (Quinone) - metabolism
Neutrophils - drug effects
NF-E2-Related Factor 2 - metabolism
Nuclear transport
Oral administration
Oxidative stress
Oxidative Stress - drug effects
Oxygenase
Phagocytosis
Protective Agents - pharmacology
Quinone oxidoreductase
Quinones
Reactive oxygen species
Reactive Oxygen Species - metabolism
THP-1 Cells
Translocation
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-TNF
Tumor necrosis factor-α
Uric acid
Uric Acid - adverse effects
title DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DHA%20protects%20against%20monosodium%20urate-induced%20inflammation%20through%20modulation%20of%20oxidative%20stress&rft.jtitle=Food%20&%20function&rft.au=Zhang,%20Yue&rft.date=2019-07-17&rft.volume=1&rft.issue=7&rft.spage=41&rft.epage=421&rft.pages=41-421&rft.issn=2042-6496&rft.eissn=2042-650X&rft_id=info:doi/10.1039/c9fo00573k&rft_dat=%3Cproquest_cross%3E2243489703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258778568&rft_id=info:pmid/31214670&rfr_iscdi=true