Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution

The initial interactions of engineered nanoparticles (NPs) with living cells are governed by physicochemical properties of the NP and the molecular composition and structure of the cell membrane. Eukaryotic cell membranes contain lipid rafts - liquid-ordered nanodomains involved in membrane traffick...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science. Nano 2020-01, Vol.7 (1), p.149-161
Hauptverfasser: Mensch, Arielle C, Melby, Eric S, Laudadio, Elizabeth D, Foreman-Ortiz, Isabel U, Zhang, Yongqian, Dohnalkova, Alice, Hu, Dehong, Pedersen, Joel A, Hamers, Robert J, Orr, Galya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 1
container_start_page 149
container_title Environmental science. Nano
container_volume 7
creator Mensch, Arielle C
Melby, Eric S
Laudadio, Elizabeth D
Foreman-Ortiz, Isabel U
Zhang, Yongqian
Dohnalkova, Alice
Hu, Dehong
Pedersen, Joel A
Hamers, Robert J
Orr, Galya
description The initial interactions of engineered nanoparticles (NPs) with living cells are governed by physicochemical properties of the NP and the molecular composition and structure of the cell membrane. Eukaryotic cell membranes contain lipid rafts - liquid-ordered nanodomains involved in membrane trafficking and molecular signaling. However, the impact of these membrane structures on cellular interactions of NPs remains unclear. Here we investigate the role of membrane domains in the interactions of primary amine-terminated quantum dots (Qdots) with liquid-ordered domains or lipid rafts in model membranes and intact cells, respectively. Using correlative atomic force and fluorescence microscopy, we found that the Qdots preferentially localized to boundaries between liquid-ordered and liquid-disordered phases in supported bilayers. The Qdots also induced holes at these phase boundaries. Using super resolution fluorescence microscopy (STORM), we found that the Qdots preferentially co-localized with lipid rafts in the membrane of intact trout gill epithelial cells - a model cell type for environmental exposures. Our observations uncovered preferential interactions of amine-terminated Qdots with liquid-ordered domains and their boundaries, possibly due to membrane curvature at phase boundaries creating energetically favorable sites for NP interactions. The preferential interaction of the Qdots with lipid rafts supports their potential internalization via lipid raft-mediated endocytosis and interactions with raft-resident signaling molecules. Primary amine-terminated Qdots preferentially interact with liquid-ordered domain boundaries in bilayers and with lipid rafts in intact cells.
doi_str_mv 10.1039/c9en00996e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9EN00996E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343522398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-e8ae1ce1463bef16f653fd0067a6cfe29d87bed09ecc26e3c19a0bec69530aaf3</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhhdRsNRevAsBb8Jqsulmm6OU-gFFPeh5mc1OMGU3aZOs4g_x_5p-UE8zzDzzvvBOll0yessol3dKoqVUSoEn2aigJctnTLDTY1_y82wSwopSylhRclGNst83jxo92migI8ZG9KCicTYQp8namx78D4HeWMzTLlWI2JLNADYOPWldDOTbxE_SY994sJhGPRhLGjfYFrzBQMC2pDNr0xIPOvEevxC6pLI7tGBdj0k7zYPrhq35RXamoQs4OdRx9vGweJ8_5cvXx-f5_TJXnFUxxxkgU8imgjeomdCi5LqlVFQglMZCtrOqwZZKVKoQyBWTQBtUQpacAmg-zq73umvvNgOGWK_c4G2yrAs-5WVRcDlL1M2eUt6FkPKqD7nUjNbb5Ou5XLzskl8k-GoP-6CO3P9n-B9eXoVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343522398</pqid></control><display><type>article</type><title>Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Mensch, Arielle C ; Melby, Eric S ; Laudadio, Elizabeth D ; Foreman-Ortiz, Isabel U ; Zhang, Yongqian ; Dohnalkova, Alice ; Hu, Dehong ; Pedersen, Joel A ; Hamers, Robert J ; Orr, Galya</creator><creatorcontrib>Mensch, Arielle C ; Melby, Eric S ; Laudadio, Elizabeth D ; Foreman-Ortiz, Isabel U ; Zhang, Yongqian ; Dohnalkova, Alice ; Hu, Dehong ; Pedersen, Joel A ; Hamers, Robert J ; Orr, Galya</creatorcontrib><description>The initial interactions of engineered nanoparticles (NPs) with living cells are governed by physicochemical properties of the NP and the molecular composition and structure of the cell membrane. Eukaryotic cell membranes contain lipid rafts - liquid-ordered nanodomains involved in membrane trafficking and molecular signaling. However, the impact of these membrane structures on cellular interactions of NPs remains unclear. Here we investigate the role of membrane domains in the interactions of primary amine-terminated quantum dots (Qdots) with liquid-ordered domains or lipid rafts in model membranes and intact cells, respectively. Using correlative atomic force and fluorescence microscopy, we found that the Qdots preferentially localized to boundaries between liquid-ordered and liquid-disordered phases in supported bilayers. The Qdots also induced holes at these phase boundaries. Using super resolution fluorescence microscopy (STORM), we found that the Qdots preferentially co-localized with lipid rafts in the membrane of intact trout gill epithelial cells - a model cell type for environmental exposures. Our observations uncovered preferential interactions of amine-terminated Qdots with liquid-ordered domains and their boundaries, possibly due to membrane curvature at phase boundaries creating energetically favorable sites for NP interactions. The preferential interaction of the Qdots with lipid rafts supports their potential internalization via lipid raft-mediated endocytosis and interactions with raft-resident signaling molecules. Primary amine-terminated Qdots preferentially interact with liquid-ordered domain boundaries in bilayers and with lipid rafts in intact cells.</description><identifier>ISSN: 2051-8153</identifier><identifier>EISSN: 2051-8161</identifier><identifier>DOI: 10.1039/c9en00996e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Amines ; Atomic force microscopy ; Boundaries ; Cell membranes ; Cellular structure ; Chemical composition ; Domains ; Endocytosis ; Epithelial cells ; Fluorescence ; Fluorescence microscopy ; Freshwater fishes ; Internalization ; Lipid rafts ; Lipids ; Membrane structures ; Membrane trafficking ; Membranes ; Microscopy ; Molecular structure ; Nanoparticles ; Phase boundaries ; Physicochemical processes ; Physicochemical properties ; Quantum dots ; Rafting ; Rafts ; Resolution ; Signaling ; Storms ; Trout</subject><ispartof>Environmental science. Nano, 2020-01, Vol.7 (1), p.149-161</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-e8ae1ce1463bef16f653fd0067a6cfe29d87bed09ecc26e3c19a0bec69530aaf3</citedby><cites>FETCH-LOGICAL-c317t-e8ae1ce1463bef16f653fd0067a6cfe29d87bed09ecc26e3c19a0bec69530aaf3</cites><orcidid>0000-0002-5552-2151 ; 0000-0002-4063-5882 ; 0000-0002-3974-2963 ; 0000-0002-3918-1860 ; 0000-0003-3821-9625 ; 0000-0002-3812-2965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mensch, Arielle C</creatorcontrib><creatorcontrib>Melby, Eric S</creatorcontrib><creatorcontrib>Laudadio, Elizabeth D</creatorcontrib><creatorcontrib>Foreman-Ortiz, Isabel U</creatorcontrib><creatorcontrib>Zhang, Yongqian</creatorcontrib><creatorcontrib>Dohnalkova, Alice</creatorcontrib><creatorcontrib>Hu, Dehong</creatorcontrib><creatorcontrib>Pedersen, Joel A</creatorcontrib><creatorcontrib>Hamers, Robert J</creatorcontrib><creatorcontrib>Orr, Galya</creatorcontrib><title>Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution</title><title>Environmental science. Nano</title><description>The initial interactions of engineered nanoparticles (NPs) with living cells are governed by physicochemical properties of the NP and the molecular composition and structure of the cell membrane. Eukaryotic cell membranes contain lipid rafts - liquid-ordered nanodomains involved in membrane trafficking and molecular signaling. However, the impact of these membrane structures on cellular interactions of NPs remains unclear. Here we investigate the role of membrane domains in the interactions of primary amine-terminated quantum dots (Qdots) with liquid-ordered domains or lipid rafts in model membranes and intact cells, respectively. Using correlative atomic force and fluorescence microscopy, we found that the Qdots preferentially localized to boundaries between liquid-ordered and liquid-disordered phases in supported bilayers. The Qdots also induced holes at these phase boundaries. Using super resolution fluorescence microscopy (STORM), we found that the Qdots preferentially co-localized with lipid rafts in the membrane of intact trout gill epithelial cells - a model cell type for environmental exposures. Our observations uncovered preferential interactions of amine-terminated Qdots with liquid-ordered domains and their boundaries, possibly due to membrane curvature at phase boundaries creating energetically favorable sites for NP interactions. The preferential interaction of the Qdots with lipid rafts supports their potential internalization via lipid raft-mediated endocytosis and interactions with raft-resident signaling molecules. Primary amine-terminated Qdots preferentially interact with liquid-ordered domain boundaries in bilayers and with lipid rafts in intact cells.</description><subject>Amines</subject><subject>Atomic force microscopy</subject><subject>Boundaries</subject><subject>Cell membranes</subject><subject>Cellular structure</subject><subject>Chemical composition</subject><subject>Domains</subject><subject>Endocytosis</subject><subject>Epithelial cells</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Freshwater fishes</subject><subject>Internalization</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Membrane structures</subject><subject>Membrane trafficking</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Molecular structure</subject><subject>Nanoparticles</subject><subject>Phase boundaries</subject><subject>Physicochemical processes</subject><subject>Physicochemical properties</subject><subject>Quantum dots</subject><subject>Rafting</subject><subject>Rafts</subject><subject>Resolution</subject><subject>Signaling</subject><subject>Storms</subject><subject>Trout</subject><issn>2051-8153</issn><issn>2051-8161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhhdRsNRevAsBb8Jqsulmm6OU-gFFPeh5mc1OMGU3aZOs4g_x_5p-UE8zzDzzvvBOll0yessol3dKoqVUSoEn2aigJctnTLDTY1_y82wSwopSylhRclGNst83jxo92migI8ZG9KCicTYQp8namx78D4HeWMzTLlWI2JLNADYOPWldDOTbxE_SY994sJhGPRhLGjfYFrzBQMC2pDNr0xIPOvEevxC6pLI7tGBdj0k7zYPrhq35RXamoQs4OdRx9vGweJ8_5cvXx-f5_TJXnFUxxxkgU8imgjeomdCi5LqlVFQglMZCtrOqwZZKVKoQyBWTQBtUQpacAmg-zq73umvvNgOGWK_c4G2yrAs-5WVRcDlL1M2eUt6FkPKqD7nUjNbb5Ou5XLzskl8k-GoP-6CO3P9n-B9eXoVQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Mensch, Arielle C</creator><creator>Melby, Eric S</creator><creator>Laudadio, Elizabeth D</creator><creator>Foreman-Ortiz, Isabel U</creator><creator>Zhang, Yongqian</creator><creator>Dohnalkova, Alice</creator><creator>Hu, Dehong</creator><creator>Pedersen, Joel A</creator><creator>Hamers, Robert J</creator><creator>Orr, Galya</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5552-2151</orcidid><orcidid>https://orcid.org/0000-0002-4063-5882</orcidid><orcidid>https://orcid.org/0000-0002-3974-2963</orcidid><orcidid>https://orcid.org/0000-0002-3918-1860</orcidid><orcidid>https://orcid.org/0000-0003-3821-9625</orcidid><orcidid>https://orcid.org/0000-0002-3812-2965</orcidid></search><sort><creationdate>20200101</creationdate><title>Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution</title><author>Mensch, Arielle C ; Melby, Eric S ; Laudadio, Elizabeth D ; Foreman-Ortiz, Isabel U ; Zhang, Yongqian ; Dohnalkova, Alice ; Hu, Dehong ; Pedersen, Joel A ; Hamers, Robert J ; Orr, Galya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-e8ae1ce1463bef16f653fd0067a6cfe29d87bed09ecc26e3c19a0bec69530aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amines</topic><topic>Atomic force microscopy</topic><topic>Boundaries</topic><topic>Cell membranes</topic><topic>Cellular structure</topic><topic>Chemical composition</topic><topic>Domains</topic><topic>Endocytosis</topic><topic>Epithelial cells</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Freshwater fishes</topic><topic>Internalization</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Membrane structures</topic><topic>Membrane trafficking</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Molecular structure</topic><topic>Nanoparticles</topic><topic>Phase boundaries</topic><topic>Physicochemical processes</topic><topic>Physicochemical properties</topic><topic>Quantum dots</topic><topic>Rafting</topic><topic>Rafts</topic><topic>Resolution</topic><topic>Signaling</topic><topic>Storms</topic><topic>Trout</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mensch, Arielle C</creatorcontrib><creatorcontrib>Melby, Eric S</creatorcontrib><creatorcontrib>Laudadio, Elizabeth D</creatorcontrib><creatorcontrib>Foreman-Ortiz, Isabel U</creatorcontrib><creatorcontrib>Zhang, Yongqian</creatorcontrib><creatorcontrib>Dohnalkova, Alice</creatorcontrib><creatorcontrib>Hu, Dehong</creatorcontrib><creatorcontrib>Pedersen, Joel A</creatorcontrib><creatorcontrib>Hamers, Robert J</creatorcontrib><creatorcontrib>Orr, Galya</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science. Nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mensch, Arielle C</au><au>Melby, Eric S</au><au>Laudadio, Elizabeth D</au><au>Foreman-Ortiz, Isabel U</au><au>Zhang, Yongqian</au><au>Dohnalkova, Alice</au><au>Hu, Dehong</au><au>Pedersen, Joel A</au><au>Hamers, Robert J</au><au>Orr, Galya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution</atitle><jtitle>Environmental science. Nano</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>149</spage><epage>161</epage><pages>149-161</pages><issn>2051-8153</issn><eissn>2051-8161</eissn><abstract>The initial interactions of engineered nanoparticles (NPs) with living cells are governed by physicochemical properties of the NP and the molecular composition and structure of the cell membrane. Eukaryotic cell membranes contain lipid rafts - liquid-ordered nanodomains involved in membrane trafficking and molecular signaling. However, the impact of these membrane structures on cellular interactions of NPs remains unclear. Here we investigate the role of membrane domains in the interactions of primary amine-terminated quantum dots (Qdots) with liquid-ordered domains or lipid rafts in model membranes and intact cells, respectively. Using correlative atomic force and fluorescence microscopy, we found that the Qdots preferentially localized to boundaries between liquid-ordered and liquid-disordered phases in supported bilayers. The Qdots also induced holes at these phase boundaries. Using super resolution fluorescence microscopy (STORM), we found that the Qdots preferentially co-localized with lipid rafts in the membrane of intact trout gill epithelial cells - a model cell type for environmental exposures. Our observations uncovered preferential interactions of amine-terminated Qdots with liquid-ordered domains and their boundaries, possibly due to membrane curvature at phase boundaries creating energetically favorable sites for NP interactions. The preferential interaction of the Qdots with lipid rafts supports their potential internalization via lipid raft-mediated endocytosis and interactions with raft-resident signaling molecules. Primary amine-terminated Qdots preferentially interact with liquid-ordered domain boundaries in bilayers and with lipid rafts in intact cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9en00996e</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5552-2151</orcidid><orcidid>https://orcid.org/0000-0002-4063-5882</orcidid><orcidid>https://orcid.org/0000-0002-3974-2963</orcidid><orcidid>https://orcid.org/0000-0002-3918-1860</orcidid><orcidid>https://orcid.org/0000-0003-3821-9625</orcidid><orcidid>https://orcid.org/0000-0002-3812-2965</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-8153
ispartof Environmental science. Nano, 2020-01, Vol.7 (1), p.149-161
issn 2051-8153
2051-8161
language eng
recordid cdi_crossref_primary_10_1039_C9EN00996E
source Royal Society Of Chemistry Journals 2008-
subjects Amines
Atomic force microscopy
Boundaries
Cell membranes
Cellular structure
Chemical composition
Domains
Endocytosis
Epithelial cells
Fluorescence
Fluorescence microscopy
Freshwater fishes
Internalization
Lipid rafts
Lipids
Membrane structures
Membrane trafficking
Membranes
Microscopy
Molecular structure
Nanoparticles
Phase boundaries
Physicochemical processes
Physicochemical properties
Quantum dots
Rafting
Rafts
Resolution
Signaling
Storms
Trout
title Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preferential%20interactions%20of%20primary%20amine-terminated%20quantum%20dots%20with%20membrane%20domain%20boundaries%20and%20lipid%20rafts%20revealed%20with%20nanometer%20resolution&rft.jtitle=Environmental%20science.%20Nano&rft.au=Mensch,%20Arielle%20C&rft.date=2020-01-01&rft.volume=7&rft.issue=1&rft.spage=149&rft.epage=161&rft.pages=149-161&rft.issn=2051-8153&rft.eissn=2051-8161&rft_id=info:doi/10.1039/c9en00996e&rft_dat=%3Cproquest_cross%3E2343522398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343522398&rft_id=info:pmid/&rfr_iscdi=true