Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes

High-energy-density batteries have been a long-standing target toward sustainability, but the energy density of state-of-the-art lithium-ion batteries is limited in part by the small capacity of the positive electrode materials. Although employing the additional oxygen-redox reaction of Li-excess tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2020, Vol.13 (5), p.1492-15
Hauptverfasser: Sudayama, Takaaki, Uehara, Kazuki, Mukai, Takahiro, Asakura, Daisuke, Shi, Xiang-Mei, Tsuchimoto, Akihisa, Mortemard de Boisse, Benoit, Shimada, Tatau, Watanabe, Eriko, Harada, Yoshihisa, Nakayama, Masanobu, Okubo, Masashi, Yamada, Atsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 5
container_start_page 1492
container_title Energy & environmental science
container_volume 13
creator Sudayama, Takaaki
Uehara, Kazuki
Mukai, Takahiro
Asakura, Daisuke
Shi, Xiang-Mei
Tsuchimoto, Akihisa
Mortemard de Boisse, Benoit
Shimada, Tatau
Watanabe, Eriko
Harada, Yoshihisa
Nakayama, Masanobu
Okubo, Masashi
Yamada, Atsuo
description High-energy-density batteries have been a long-standing target toward sustainability, but the energy density of state-of-the-art lithium-ion batteries is limited in part by the small capacity of the positive electrode materials. Although employing the additional oxygen-redox reaction of Li-excess transition-metal oxides is an attractive approach to increase the capacity, an atomic-level understanding of the reaction mechanism has not been established so far. Here, using bulk-sensitive resonant inelastic X-ray scattering spectroscopy combined with ab initio computations, we demonstrate the presence of a localized oxygen 2p orbital weakly hybridized with transition metal t 2g orbitals that was theoretically predicted to play a key role in oxygen-redox reactions. After oxygen oxidation, the hole in the oxygen 2p orbital is stabilized by the generation of either a (σ + π) multiorbital bond through strong π back-donation or peroxide O 2 2− through oxygen dimerization. The multiorbital bond formation with σ-accepting and π-donating transition metals can thus lead to reversible oxygen-redox reaction. Nonbonding oxygen 2p orbitals during oxygen-redox reaction are monitored using resonant inelastic X-ray scattering (RIXS).
doi_str_mv 10.1039/c9ee04197d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9EE04197D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404546408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c638225ca11407f898f18e9c1292b11f11501564df01166b09e20cbc5f8a3ffd3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVi3ch4k2Izmw2m-xRav2AiiB6DpvNrKTEbN3dQvvvTVs_bp7mZXiYgZexU4QrhExdG0UEAlXR7LERFrlI8wLk_k-Wih-yoxDmAJJDoUbs5WnZxdb5uo26S2rXN4l1_kMPu36TkhB13VHiVut36lNPjVslnrTZgrZPah0j-XVCHZnoXUPhmB1Y3QU6-Z5j9nY3fZ08pLPn-8fJzSw1WQkxNTIrOc-NRhRQ2FKVFktSBrniNaJFzAFzKRoLiFLWoIiDqU1uS51Z22RjdrG7u_Duc0khVnO39P3wsuICRC6kgHJQlztlvAvBk60Wvv3Qfl0hVJvOqomaTred3Q74fId9ML_ur9Nq0djBnP1nsi_FMHQl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404546408</pqid></control><display><type>article</type><title>Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes</title><source>Royal Society Of Chemistry Journals</source><creator>Sudayama, Takaaki ; Uehara, Kazuki ; Mukai, Takahiro ; Asakura, Daisuke ; Shi, Xiang-Mei ; Tsuchimoto, Akihisa ; Mortemard de Boisse, Benoit ; Shimada, Tatau ; Watanabe, Eriko ; Harada, Yoshihisa ; Nakayama, Masanobu ; Okubo, Masashi ; Yamada, Atsuo</creator><creatorcontrib>Sudayama, Takaaki ; Uehara, Kazuki ; Mukai, Takahiro ; Asakura, Daisuke ; Shi, Xiang-Mei ; Tsuchimoto, Akihisa ; Mortemard de Boisse, Benoit ; Shimada, Tatau ; Watanabe, Eriko ; Harada, Yoshihisa ; Nakayama, Masanobu ; Okubo, Masashi ; Yamada, Atsuo</creatorcontrib><description>High-energy-density batteries have been a long-standing target toward sustainability, but the energy density of state-of-the-art lithium-ion batteries is limited in part by the small capacity of the positive electrode materials. Although employing the additional oxygen-redox reaction of Li-excess transition-metal oxides is an attractive approach to increase the capacity, an atomic-level understanding of the reaction mechanism has not been established so far. Here, using bulk-sensitive resonant inelastic X-ray scattering spectroscopy combined with ab initio computations, we demonstrate the presence of a localized oxygen 2p orbital weakly hybridized with transition metal t 2g orbitals that was theoretically predicted to play a key role in oxygen-redox reactions. After oxygen oxidation, the hole in the oxygen 2p orbital is stabilized by the generation of either a (σ + π) multiorbital bond through strong π back-donation or peroxide O 2 2− through oxygen dimerization. The multiorbital bond formation with σ-accepting and π-donating transition metals can thus lead to reversible oxygen-redox reaction. Nonbonding oxygen 2p orbitals during oxygen-redox reaction are monitored using resonant inelastic X-ray scattering (RIXS).</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c9ee04197d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Bonding ; Dimerization ; Electrode materials ; Electrodes ; Flux density ; Heavy metals ; Inelastic scattering ; Lithium ; Lithium-ion batteries ; Orbital stability ; Oxidation ; Oxygen ; Peroxide ; Reaction mechanisms ; Rechargeable batteries ; Redox reactions ; Spectroscopy ; Sustainability ; Transition metal oxides ; Transition metals ; X-ray scattering</subject><ispartof>Energy &amp; environmental science, 2020, Vol.13 (5), p.1492-15</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c638225ca11407f898f18e9c1292b11f11501564df01166b09e20cbc5f8a3ffd3</citedby><cites>FETCH-LOGICAL-c380t-c638225ca11407f898f18e9c1292b11f11501564df01166b09e20cbc5f8a3ffd3</cites><orcidid>0000-0002-5113-053X ; 0000-0002-4590-9109 ; 0000-0002-7880-5701 ; 0000-0001-7502-8858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sudayama, Takaaki</creatorcontrib><creatorcontrib>Uehara, Kazuki</creatorcontrib><creatorcontrib>Mukai, Takahiro</creatorcontrib><creatorcontrib>Asakura, Daisuke</creatorcontrib><creatorcontrib>Shi, Xiang-Mei</creatorcontrib><creatorcontrib>Tsuchimoto, Akihisa</creatorcontrib><creatorcontrib>Mortemard de Boisse, Benoit</creatorcontrib><creatorcontrib>Shimada, Tatau</creatorcontrib><creatorcontrib>Watanabe, Eriko</creatorcontrib><creatorcontrib>Harada, Yoshihisa</creatorcontrib><creatorcontrib>Nakayama, Masanobu</creatorcontrib><creatorcontrib>Okubo, Masashi</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><title>Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes</title><title>Energy &amp; environmental science</title><description>High-energy-density batteries have been a long-standing target toward sustainability, but the energy density of state-of-the-art lithium-ion batteries is limited in part by the small capacity of the positive electrode materials. Although employing the additional oxygen-redox reaction of Li-excess transition-metal oxides is an attractive approach to increase the capacity, an atomic-level understanding of the reaction mechanism has not been established so far. Here, using bulk-sensitive resonant inelastic X-ray scattering spectroscopy combined with ab initio computations, we demonstrate the presence of a localized oxygen 2p orbital weakly hybridized with transition metal t 2g orbitals that was theoretically predicted to play a key role in oxygen-redox reactions. After oxygen oxidation, the hole in the oxygen 2p orbital is stabilized by the generation of either a (σ + π) multiorbital bond through strong π back-donation or peroxide O 2 2− through oxygen dimerization. The multiorbital bond formation with σ-accepting and π-donating transition metals can thus lead to reversible oxygen-redox reaction. Nonbonding oxygen 2p orbitals during oxygen-redox reaction are monitored using resonant inelastic X-ray scattering (RIXS).</description><subject>Batteries</subject><subject>Bonding</subject><subject>Dimerization</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Flux density</subject><subject>Heavy metals</subject><subject>Inelastic scattering</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Orbital stability</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Peroxide</subject><subject>Reaction mechanisms</subject><subject>Rechargeable batteries</subject><subject>Redox reactions</subject><subject>Spectroscopy</subject><subject>Sustainability</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><subject>X-ray scattering</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFKzVi3ch4k2Izmw2m-xRav2AiiB6DpvNrKTEbN3dQvvvTVs_bp7mZXiYgZexU4QrhExdG0UEAlXR7LERFrlI8wLk_k-Wih-yoxDmAJJDoUbs5WnZxdb5uo26S2rXN4l1_kMPu36TkhB13VHiVut36lNPjVslnrTZgrZPah0j-XVCHZnoXUPhmB1Y3QU6-Z5j9nY3fZ08pLPn-8fJzSw1WQkxNTIrOc-NRhRQ2FKVFktSBrniNaJFzAFzKRoLiFLWoIiDqU1uS51Z22RjdrG7u_Duc0khVnO39P3wsuICRC6kgHJQlztlvAvBk60Wvv3Qfl0hVJvOqomaTred3Q74fId9ML_ur9Nq0djBnP1nsi_FMHQl</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sudayama, Takaaki</creator><creator>Uehara, Kazuki</creator><creator>Mukai, Takahiro</creator><creator>Asakura, Daisuke</creator><creator>Shi, Xiang-Mei</creator><creator>Tsuchimoto, Akihisa</creator><creator>Mortemard de Boisse, Benoit</creator><creator>Shimada, Tatau</creator><creator>Watanabe, Eriko</creator><creator>Harada, Yoshihisa</creator><creator>Nakayama, Masanobu</creator><creator>Okubo, Masashi</creator><creator>Yamada, Atsuo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5113-053X</orcidid><orcidid>https://orcid.org/0000-0002-4590-9109</orcidid><orcidid>https://orcid.org/0000-0002-7880-5701</orcidid><orcidid>https://orcid.org/0000-0001-7502-8858</orcidid></search><sort><creationdate>2020</creationdate><title>Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes</title><author>Sudayama, Takaaki ; Uehara, Kazuki ; Mukai, Takahiro ; Asakura, Daisuke ; Shi, Xiang-Mei ; Tsuchimoto, Akihisa ; Mortemard de Boisse, Benoit ; Shimada, Tatau ; Watanabe, Eriko ; Harada, Yoshihisa ; Nakayama, Masanobu ; Okubo, Masashi ; Yamada, Atsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c638225ca11407f898f18e9c1292b11f11501564df01166b09e20cbc5f8a3ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Bonding</topic><topic>Dimerization</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Flux density</topic><topic>Heavy metals</topic><topic>Inelastic scattering</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Orbital stability</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Peroxide</topic><topic>Reaction mechanisms</topic><topic>Rechargeable batteries</topic><topic>Redox reactions</topic><topic>Spectroscopy</topic><topic>Sustainability</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudayama, Takaaki</creatorcontrib><creatorcontrib>Uehara, Kazuki</creatorcontrib><creatorcontrib>Mukai, Takahiro</creatorcontrib><creatorcontrib>Asakura, Daisuke</creatorcontrib><creatorcontrib>Shi, Xiang-Mei</creatorcontrib><creatorcontrib>Tsuchimoto, Akihisa</creatorcontrib><creatorcontrib>Mortemard de Boisse, Benoit</creatorcontrib><creatorcontrib>Shimada, Tatau</creatorcontrib><creatorcontrib>Watanabe, Eriko</creatorcontrib><creatorcontrib>Harada, Yoshihisa</creatorcontrib><creatorcontrib>Nakayama, Masanobu</creatorcontrib><creatorcontrib>Okubo, Masashi</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudayama, Takaaki</au><au>Uehara, Kazuki</au><au>Mukai, Takahiro</au><au>Asakura, Daisuke</au><au>Shi, Xiang-Mei</au><au>Tsuchimoto, Akihisa</au><au>Mortemard de Boisse, Benoit</au><au>Shimada, Tatau</au><au>Watanabe, Eriko</au><au>Harada, Yoshihisa</au><au>Nakayama, Masanobu</au><au>Okubo, Masashi</au><au>Yamada, Atsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2020</date><risdate>2020</risdate><volume>13</volume><issue>5</issue><spage>1492</spage><epage>15</epage><pages>1492-15</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>High-energy-density batteries have been a long-standing target toward sustainability, but the energy density of state-of-the-art lithium-ion batteries is limited in part by the small capacity of the positive electrode materials. Although employing the additional oxygen-redox reaction of Li-excess transition-metal oxides is an attractive approach to increase the capacity, an atomic-level understanding of the reaction mechanism has not been established so far. Here, using bulk-sensitive resonant inelastic X-ray scattering spectroscopy combined with ab initio computations, we demonstrate the presence of a localized oxygen 2p orbital weakly hybridized with transition metal t 2g orbitals that was theoretically predicted to play a key role in oxygen-redox reactions. After oxygen oxidation, the hole in the oxygen 2p orbital is stabilized by the generation of either a (σ + π) multiorbital bond through strong π back-donation or peroxide O 2 2− through oxygen dimerization. The multiorbital bond formation with σ-accepting and π-donating transition metals can thus lead to reversible oxygen-redox reaction. Nonbonding oxygen 2p orbitals during oxygen-redox reaction are monitored using resonant inelastic X-ray scattering (RIXS).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ee04197d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5113-053X</orcidid><orcidid>https://orcid.org/0000-0002-4590-9109</orcidid><orcidid>https://orcid.org/0000-0002-7880-5701</orcidid><orcidid>https://orcid.org/0000-0001-7502-8858</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2020, Vol.13 (5), p.1492-15
issn 1754-5692
1754-5706
language eng
recordid cdi_crossref_primary_10_1039_C9EE04197D
source Royal Society Of Chemistry Journals
subjects Batteries
Bonding
Dimerization
Electrode materials
Electrodes
Flux density
Heavy metals
Inelastic scattering
Lithium
Lithium-ion batteries
Orbital stability
Oxidation
Oxygen
Peroxide
Reaction mechanisms
Rechargeable batteries
Redox reactions
Spectroscopy
Sustainability
Transition metal oxides
Transition metals
X-ray scattering
title Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiorbital%20bond%20formation%20for%20stable%20oxygen-redox%20reaction%20in%20battery%20electrodes&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Sudayama,%20Takaaki&rft.date=2020&rft.volume=13&rft.issue=5&rft.spage=1492&rft.epage=15&rft.pages=1492-15&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c9ee04197d&rft_dat=%3Cproquest_cross%3E2404546408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404546408&rft_id=info:pmid/&rfr_iscdi=true