Weak-field ligands enable inert early transition metal oxides to convert methane to methanol: the case of ZrO
Zirconium monoxide, ZrO, was studied by multi-reference configuration interaction (MRCI) and coupled cluster methods using large basis sets in conjunction with effective core potentials. Complete potential energy curves were constructed and bonding patterns are proposed for several electronic states...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-03, Vol.22 (12), p.666-6618 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6618 |
---|---|
container_issue | 12 |
container_start_page | 666 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 22 |
creator | Jackson, Benjamin A Miliordos, Evangelos |
description | Zirconium monoxide, ZrO, was studied by multi-reference configuration interaction (MRCI) and coupled cluster methods using large basis sets in conjunction with effective core potentials. Complete potential energy curves were constructed and bonding patterns are proposed for several electronic states. Numerical results include accurate equilibrium bond lengths, harmonic vibrational frequencies, anharmonicities, excitation energies, dipole moments, and binding energies for both ground and excited states. The application of a ZrO unit as the catalytic center for methane activation is explored through the reaction ZrO + CH
4
→ Zr + CH
3
OH. Optimal density functional structures combined with single-point MRCI energy calculations are obtained for the complete reaction pathway. It is found that the lower energy singlet and triplet multiplicities (oxo states) favor the [2+2] mechanism and the higher energy quintets (oxyl states) favor the radical mechanism, which is overall more efficient in producing methanol. We finally suggest proper ligands that stabilize the oxyl states. These include halogens or other weak-field ligands, which finally convert the inert early transition metal oxide units to efficient methane-to-methanol catalysts.
We perform multireference calculations on the ZrO + CH
4
reaction for ground and excited electronic states. Weak-field ligands are shown to stabilize the high spin states of ZrO with oxyl character, which facilitate the reaction
via
a radical mechanism. |
doi_str_mv | 10.1039/c9cp06050b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9CP06050B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376230765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-2edb4a6ae70892ac2ce0915e98cd9b39306a85a0fe931fb4bcd63700b7fb67b3</originalsourceid><addsrcrecordid>eNp90UFP2zAUB3BrYlpL2WV3kBGXaVLgOU6cmBtUY5uEBAckpF0i23lZ0zlxsFNEvz0uhSLtsJOfnn96enp_Qr4wOGXA5ZmRZgABOegPZMoywRMJZba3qwsxIfshLAGA5Yx_IhOeslwyUUxJd4_qb9K0aGtq2z-qrwPFXmmLtO3RjxSVt2s6etWHdmxdTzsclaXuqa0x0NFR4_rHDYz9hepx09qWzp7TcYHUqIDUNfS3vzkgHxtlA35-fWfk7ur73fxncn3z49f84joxGcCYpFjrTAmFBZQyVSY1CJLlKEtTS80lB6HKXEGDkrNGZ9rUghcAumi0KDSfka_bsYN3DysMY9W1waC1cT-3ClXKC5HyeJc80pN_6NKtfB-Xi6pM8zg23nhGvm2V8S4Ej001-LZTfl0xqDYZVHM5v33J4DLio9eRK91hvaNvR4_geAt8MLvf9xCroW6iOfyf4c9W7pb7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382537010</pqid></control><display><type>article</type><title>Weak-field ligands enable inert early transition metal oxides to convert methane to methanol: the case of ZrO</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Jackson, Benjamin A ; Miliordos, Evangelos</creator><creatorcontrib>Jackson, Benjamin A ; Miliordos, Evangelos</creatorcontrib><description>Zirconium monoxide, ZrO, was studied by multi-reference configuration interaction (MRCI) and coupled cluster methods using large basis sets in conjunction with effective core potentials. Complete potential energy curves were constructed and bonding patterns are proposed for several electronic states. Numerical results include accurate equilibrium bond lengths, harmonic vibrational frequencies, anharmonicities, excitation energies, dipole moments, and binding energies for both ground and excited states. The application of a ZrO unit as the catalytic center for methane activation is explored through the reaction ZrO + CH
4
→ Zr + CH
3
OH. Optimal density functional structures combined with single-point MRCI energy calculations are obtained for the complete reaction pathway. It is found that the lower energy singlet and triplet multiplicities (oxo states) favor the [2+2] mechanism and the higher energy quintets (oxyl states) favor the radical mechanism, which is overall more efficient in producing methanol. We finally suggest proper ligands that stabilize the oxyl states. These include halogens or other weak-field ligands, which finally convert the inert early transition metal oxide units to efficient methane-to-methanol catalysts.
We perform multireference calculations on the ZrO + CH
4
reaction for ground and excited electronic states. Weak-field ligands are shown to stabilize the high spin states of ZrO with oxyl character, which facilitate the reaction
via
a radical mechanism.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp06050b</identifier><identifier>PMID: 32159167</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anharmonicity ; Configuration interaction ; Dipole moments ; Electron states ; Halogens ; Ligands ; Methane ; Methanol ; Potential energy ; Transition metal oxides ; Zirconium</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-03, Vol.22 (12), p.666-6618</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-2edb4a6ae70892ac2ce0915e98cd9b39306a85a0fe931fb4bcd63700b7fb67b3</citedby><cites>FETCH-LOGICAL-c400t-2edb4a6ae70892ac2ce0915e98cd9b39306a85a0fe931fb4bcd63700b7fb67b3</cites><orcidid>0000-0001-6205-8951 ; 0000-0003-3471-7133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32159167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, Benjamin A</creatorcontrib><creatorcontrib>Miliordos, Evangelos</creatorcontrib><title>Weak-field ligands enable inert early transition metal oxides to convert methane to methanol: the case of ZrO</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Zirconium monoxide, ZrO, was studied by multi-reference configuration interaction (MRCI) and coupled cluster methods using large basis sets in conjunction with effective core potentials. Complete potential energy curves were constructed and bonding patterns are proposed for several electronic states. Numerical results include accurate equilibrium bond lengths, harmonic vibrational frequencies, anharmonicities, excitation energies, dipole moments, and binding energies for both ground and excited states. The application of a ZrO unit as the catalytic center for methane activation is explored through the reaction ZrO + CH
4
→ Zr + CH
3
OH. Optimal density functional structures combined with single-point MRCI energy calculations are obtained for the complete reaction pathway. It is found that the lower energy singlet and triplet multiplicities (oxo states) favor the [2+2] mechanism and the higher energy quintets (oxyl states) favor the radical mechanism, which is overall more efficient in producing methanol. We finally suggest proper ligands that stabilize the oxyl states. These include halogens or other weak-field ligands, which finally convert the inert early transition metal oxide units to efficient methane-to-methanol catalysts.
We perform multireference calculations on the ZrO + CH
4
reaction for ground and excited electronic states. Weak-field ligands are shown to stabilize the high spin states of ZrO with oxyl character, which facilitate the reaction
via
a radical mechanism.</description><subject>Anharmonicity</subject><subject>Configuration interaction</subject><subject>Dipole moments</subject><subject>Electron states</subject><subject>Halogens</subject><subject>Ligands</subject><subject>Methane</subject><subject>Methanol</subject><subject>Potential energy</subject><subject>Transition metal oxides</subject><subject>Zirconium</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90UFP2zAUB3BrYlpL2WV3kBGXaVLgOU6cmBtUY5uEBAckpF0i23lZ0zlxsFNEvz0uhSLtsJOfnn96enp_Qr4wOGXA5ZmRZgABOegPZMoywRMJZba3qwsxIfshLAGA5Yx_IhOeslwyUUxJd4_qb9K0aGtq2z-qrwPFXmmLtO3RjxSVt2s6etWHdmxdTzsclaXuqa0x0NFR4_rHDYz9hepx09qWzp7TcYHUqIDUNfS3vzkgHxtlA35-fWfk7ur73fxncn3z49f84joxGcCYpFjrTAmFBZQyVSY1CJLlKEtTS80lB6HKXEGDkrNGZ9rUghcAumi0KDSfka_bsYN3DysMY9W1waC1cT-3ClXKC5HyeJc80pN_6NKtfB-Xi6pM8zg23nhGvm2V8S4Ej001-LZTfl0xqDYZVHM5v33J4DLio9eRK91hvaNvR4_geAt8MLvf9xCroW6iOfyf4c9W7pb7</recordid><startdate>20200328</startdate><enddate>20200328</enddate><creator>Jackson, Benjamin A</creator><creator>Miliordos, Evangelos</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6205-8951</orcidid><orcidid>https://orcid.org/0000-0003-3471-7133</orcidid></search><sort><creationdate>20200328</creationdate><title>Weak-field ligands enable inert early transition metal oxides to convert methane to methanol: the case of ZrO</title><author>Jackson, Benjamin A ; Miliordos, Evangelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-2edb4a6ae70892ac2ce0915e98cd9b39306a85a0fe931fb4bcd63700b7fb67b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anharmonicity</topic><topic>Configuration interaction</topic><topic>Dipole moments</topic><topic>Electron states</topic><topic>Halogens</topic><topic>Ligands</topic><topic>Methane</topic><topic>Methanol</topic><topic>Potential energy</topic><topic>Transition metal oxides</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, Benjamin A</creatorcontrib><creatorcontrib>Miliordos, Evangelos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, Benjamin A</au><au>Miliordos, Evangelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak-field ligands enable inert early transition metal oxides to convert methane to methanol: the case of ZrO</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2020-03-28</date><risdate>2020</risdate><volume>22</volume><issue>12</issue><spage>666</spage><epage>6618</epage><pages>666-6618</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Zirconium monoxide, ZrO, was studied by multi-reference configuration interaction (MRCI) and coupled cluster methods using large basis sets in conjunction with effective core potentials. Complete potential energy curves were constructed and bonding patterns are proposed for several electronic states. Numerical results include accurate equilibrium bond lengths, harmonic vibrational frequencies, anharmonicities, excitation energies, dipole moments, and binding energies for both ground and excited states. The application of a ZrO unit as the catalytic center for methane activation is explored through the reaction ZrO + CH
4
→ Zr + CH
3
OH. Optimal density functional structures combined with single-point MRCI energy calculations are obtained for the complete reaction pathway. It is found that the lower energy singlet and triplet multiplicities (oxo states) favor the [2+2] mechanism and the higher energy quintets (oxyl states) favor the radical mechanism, which is overall more efficient in producing methanol. We finally suggest proper ligands that stabilize the oxyl states. These include halogens or other weak-field ligands, which finally convert the inert early transition metal oxide units to efficient methane-to-methanol catalysts.
We perform multireference calculations on the ZrO + CH
4
reaction for ground and excited electronic states. Weak-field ligands are shown to stabilize the high spin states of ZrO with oxyl character, which facilitate the reaction
via
a radical mechanism.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32159167</pmid><doi>10.1039/c9cp06050b</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6205-8951</orcidid><orcidid>https://orcid.org/0000-0003-3471-7133</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2020-03, Vol.22 (12), p.666-6618 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9CP06050B |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Anharmonicity Configuration interaction Dipole moments Electron states Halogens Ligands Methane Methanol Potential energy Transition metal oxides Zirconium |
title | Weak-field ligands enable inert early transition metal oxides to convert methane to methanol: the case of ZrO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak-field%20ligands%20enable%20inert%20early%20transition%20metal%20oxides%20to%20convert%20methane%20to%20methanol:%20the%20case%20of%20ZrO&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Jackson,%20Benjamin%20A&rft.date=2020-03-28&rft.volume=22&rft.issue=12&rft.spage=666&rft.epage=6618&rft.pages=666-6618&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp06050b&rft_dat=%3Cproquest_cross%3E2376230765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382537010&rft_id=info:pmid/32159167&rfr_iscdi=true |