Brownian dynamics simulations of one-patch inverse patchy particles

Inverse patchy particles are promising colloids to develop new architectures in ceramic materials based on their self-assembly. Nonetheless, a good understanding of their aggregation is required. Several previous studies have shown that the behavior of ceramic colloids can be well described by the D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019, Vol.21 (42), p.23447-23458
Hauptverfasser: Cerbelaud, Manuella, Lebdioua, Khaoula, Tran, Công Tâm, Crespin, Benoît, Aimable, Anne, Videcoq, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23458
container_issue 42
container_start_page 23447
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Cerbelaud, Manuella
Lebdioua, Khaoula
Tran, Công Tâm
Crespin, Benoît
Aimable, Anne
Videcoq, Arnaud
description Inverse patchy particles are promising colloids to develop new architectures in ceramic materials based on their self-assembly. Nonetheless, a good understanding of their aggregation is required. Several previous studies have shown that the behavior of ceramic colloids can be well described by the DLVO interaction potential. In the present paper, we develop new coarse-grained Brownian dynamics simulations, where particles are represented by an assembly of beads interacting via DLVO interactions, whose parameters can be directly linked to experimental characterization. First, the validity of the simulations is proved by studying the heteroaggregation of homogeneously charged particles. Then, simulations are applied to one-patch inverse patchy particles to study the effect of the patch size. They show that the smaller the patch, the more elongated the aggregates. Simulations are also performed to understand the role of the Debye screening length in the particular case of large patches and they show that aggregation leads always to compact aggregates. 92 bead colloids are used to study the self-assembly of large surface anistropic particles.
doi_str_mv 10.1039/c9cp04247d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9CP04247D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306215572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-caf1b7f9f0dcd6064e80ff8ecb4b1026ea5b25fc1427fb3466de962a5b4925d53</originalsourceid><addsrcrecordid>eNp90UtLAzEQAOBFFKzVi3dhxYsKq5PHJt1jXR8VCnrQc8hmExrZbtZkW-m_N22lggdPkxk-hplJkpwiuEFAiltVqA4oprzeSwaIMpIVMKL7uzdnh8lRCB8AgHJEBkl5591Xa2Wb1qtWzq0KabDzRSN769qQOpO6Vmed7NUste1S-6DTTbaKwfdWNTocJwdGNkGf_MRh8v748FZOsunL03M5nmaKct5nShpUcVMYqFXNgFE9AmNGWlW0QoCZlnmFc6MQxdxUhDJW64LhWKUFzuucDJOrbd-ZbETn7Vz6lXDSisl4KtY1wAQDRmSJor3c2s67z4UOvZjboHTTyFa7RRCYAMMozzmO9OIP_XAL38ZNooqDcQQcorreKuVdCF6b3QQIxPr2oizK183t7yM-32If1M79_o3oahPN2X-GfAPEl4r2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310271070</pqid></control><display><type>article</type><title>Brownian dynamics simulations of one-patch inverse patchy particles</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Cerbelaud, Manuella ; Lebdioua, Khaoula ; Tran, Công Tâm ; Crespin, Benoît ; Aimable, Anne ; Videcoq, Arnaud</creator><creatorcontrib>Cerbelaud, Manuella ; Lebdioua, Khaoula ; Tran, Công Tâm ; Crespin, Benoît ; Aimable, Anne ; Videcoq, Arnaud</creatorcontrib><description>Inverse patchy particles are promising colloids to develop new architectures in ceramic materials based on their self-assembly. Nonetheless, a good understanding of their aggregation is required. Several previous studies have shown that the behavior of ceramic colloids can be well described by the DLVO interaction potential. In the present paper, we develop new coarse-grained Brownian dynamics simulations, where particles are represented by an assembly of beads interacting via DLVO interactions, whose parameters can be directly linked to experimental characterization. First, the validity of the simulations is proved by studying the heteroaggregation of homogeneously charged particles. Then, simulations are applied to one-patch inverse patchy particles to study the effect of the patch size. They show that the smaller the patch, the more elongated the aggregates. Simulations are also performed to understand the role of the Debye screening length in the particular case of large patches and they show that aggregation leads always to compact aggregates. 92 bead colloids are used to study the self-assembly of large surface anistropic particles.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp04247d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Agglomeration ; Aggregates ; Beads ; Charged particles ; Chemical Sciences ; Coarsening ; Colloids ; Engineering Sciences ; Material chemistry ; Materials ; Self-assembly ; Simulation</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (42), p.23447-23458</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-caf1b7f9f0dcd6064e80ff8ecb4b1026ea5b25fc1427fb3466de962a5b4925d53</citedby><cites>FETCH-LOGICAL-c477t-caf1b7f9f0dcd6064e80ff8ecb4b1026ea5b25fc1427fb3466de962a5b4925d53</cites><orcidid>0000-0001-6934-1872 ; 0000-0001-7030-9140 ; 0000-0002-2644-9434 ; 0000-0002-9105-0243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://unilim.hal.science/hal-02320213$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cerbelaud, Manuella</creatorcontrib><creatorcontrib>Lebdioua, Khaoula</creatorcontrib><creatorcontrib>Tran, Công Tâm</creatorcontrib><creatorcontrib>Crespin, Benoît</creatorcontrib><creatorcontrib>Aimable, Anne</creatorcontrib><creatorcontrib>Videcoq, Arnaud</creatorcontrib><title>Brownian dynamics simulations of one-patch inverse patchy particles</title><title>Physical chemistry chemical physics : PCCP</title><description>Inverse patchy particles are promising colloids to develop new architectures in ceramic materials based on their self-assembly. Nonetheless, a good understanding of their aggregation is required. Several previous studies have shown that the behavior of ceramic colloids can be well described by the DLVO interaction potential. In the present paper, we develop new coarse-grained Brownian dynamics simulations, where particles are represented by an assembly of beads interacting via DLVO interactions, whose parameters can be directly linked to experimental characterization. First, the validity of the simulations is proved by studying the heteroaggregation of homogeneously charged particles. Then, simulations are applied to one-patch inverse patchy particles to study the effect of the patch size. They show that the smaller the patch, the more elongated the aggregates. Simulations are also performed to understand the role of the Debye screening length in the particular case of large patches and they show that aggregation leads always to compact aggregates. 92 bead colloids are used to study the self-assembly of large surface anistropic particles.</description><subject>Agglomeration</subject><subject>Aggregates</subject><subject>Beads</subject><subject>Charged particles</subject><subject>Chemical Sciences</subject><subject>Coarsening</subject><subject>Colloids</subject><subject>Engineering Sciences</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Self-assembly</subject><subject>Simulation</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90UtLAzEQAOBFFKzVi3dhxYsKq5PHJt1jXR8VCnrQc8hmExrZbtZkW-m_N22lggdPkxk-hplJkpwiuEFAiltVqA4oprzeSwaIMpIVMKL7uzdnh8lRCB8AgHJEBkl5591Xa2Wb1qtWzq0KabDzRSN769qQOpO6Vmed7NUste1S-6DTTbaKwfdWNTocJwdGNkGf_MRh8v748FZOsunL03M5nmaKct5nShpUcVMYqFXNgFE9AmNGWlW0QoCZlnmFc6MQxdxUhDJW64LhWKUFzuucDJOrbd-ZbETn7Vz6lXDSisl4KtY1wAQDRmSJor3c2s67z4UOvZjboHTTyFa7RRCYAMMozzmO9OIP_XAL38ZNooqDcQQcorreKuVdCF6b3QQIxPr2oizK183t7yM-32If1M79_o3oahPN2X-GfAPEl4r2</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Cerbelaud, Manuella</creator><creator>Lebdioua, Khaoula</creator><creator>Tran, Công Tâm</creator><creator>Crespin, Benoît</creator><creator>Aimable, Anne</creator><creator>Videcoq, Arnaud</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6934-1872</orcidid><orcidid>https://orcid.org/0000-0001-7030-9140</orcidid><orcidid>https://orcid.org/0000-0002-2644-9434</orcidid><orcidid>https://orcid.org/0000-0002-9105-0243</orcidid></search><sort><creationdate>2019</creationdate><title>Brownian dynamics simulations of one-patch inverse patchy particles</title><author>Cerbelaud, Manuella ; Lebdioua, Khaoula ; Tran, Công Tâm ; Crespin, Benoît ; Aimable, Anne ; Videcoq, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-caf1b7f9f0dcd6064e80ff8ecb4b1026ea5b25fc1427fb3466de962a5b4925d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agglomeration</topic><topic>Aggregates</topic><topic>Beads</topic><topic>Charged particles</topic><topic>Chemical Sciences</topic><topic>Coarsening</topic><topic>Colloids</topic><topic>Engineering Sciences</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Self-assembly</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerbelaud, Manuella</creatorcontrib><creatorcontrib>Lebdioua, Khaoula</creatorcontrib><creatorcontrib>Tran, Công Tâm</creatorcontrib><creatorcontrib>Crespin, Benoît</creatorcontrib><creatorcontrib>Aimable, Anne</creatorcontrib><creatorcontrib>Videcoq, Arnaud</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerbelaud, Manuella</au><au>Lebdioua, Khaoula</au><au>Tran, Công Tâm</au><au>Crespin, Benoît</au><au>Aimable, Anne</au><au>Videcoq, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brownian dynamics simulations of one-patch inverse patchy particles</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>42</issue><spage>23447</spage><epage>23458</epage><pages>23447-23458</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Inverse patchy particles are promising colloids to develop new architectures in ceramic materials based on their self-assembly. Nonetheless, a good understanding of their aggregation is required. Several previous studies have shown that the behavior of ceramic colloids can be well described by the DLVO interaction potential. In the present paper, we develop new coarse-grained Brownian dynamics simulations, where particles are represented by an assembly of beads interacting via DLVO interactions, whose parameters can be directly linked to experimental characterization. First, the validity of the simulations is proved by studying the heteroaggregation of homogeneously charged particles. Then, simulations are applied to one-patch inverse patchy particles to study the effect of the patch size. They show that the smaller the patch, the more elongated the aggregates. Simulations are also performed to understand the role of the Debye screening length in the particular case of large patches and they show that aggregation leads always to compact aggregates. 92 bead colloids are used to study the self-assembly of large surface anistropic particles.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp04247d</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6934-1872</orcidid><orcidid>https://orcid.org/0000-0001-7030-9140</orcidid><orcidid>https://orcid.org/0000-0002-2644-9434</orcidid><orcidid>https://orcid.org/0000-0002-9105-0243</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019, Vol.21 (42), p.23447-23458
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_C9CP04247D
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Agglomeration
Aggregates
Beads
Charged particles
Chemical Sciences
Coarsening
Colloids
Engineering Sciences
Material chemistry
Materials
Self-assembly
Simulation
title Brownian dynamics simulations of one-patch inverse patchy particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brownian%20dynamics%20simulations%20of%20one-patch%20inverse%20patchy%20particles&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Cerbelaud,%20Manuella&rft.date=2019&rft.volume=21&rft.issue=42&rft.spage=23447&rft.epage=23458&rft.pages=23447-23458&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp04247d&rft_dat=%3Cproquest_cross%3E2306215572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310271070&rft_id=info:pmid/&rfr_iscdi=true