Size and crystallinity control of dispersed VO 2 particles for modulation of metal–insulator transition temperature and hysteresis

VO 2 particles with a reduced size enable the optimization of its metal–insulator transition (MIT) temperature and hysteresis width. The accurate modulation of particle size and the underlying mechanism of transition behavior remains a critical issue. In this study, the annealing process of a V 2 O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2019-09, Vol.21 (38), p.5749-5756
Hauptverfasser: Zeng, Wen, Lai, Haojie, Chen, Tianyin, Lu, Yueheng, Liang, Zhihong, Shi, Tingting, Chen, Ke, Liu, Pengyi, Xie, Fangyan, Chen, Jian, Xu, Jianbin, Chen, Qiulan, Xie, Weiguang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5756
container_issue 38
container_start_page 5749
container_title CrystEngComm
container_volume 21
creator Zeng, Wen
Lai, Haojie
Chen, Tianyin
Lu, Yueheng
Liang, Zhihong
Shi, Tingting
Chen, Ke
Liu, Pengyi
Xie, Fangyan
Chen, Jian
Xu, Jianbin
Chen, Qiulan
Xie, Weiguang
description VO 2 particles with a reduced size enable the optimization of its metal–insulator transition (MIT) temperature and hysteresis width. The accurate modulation of particle size and the underlying mechanism of transition behavior remains a critical issue. In this study, the annealing process of a V 2 O 5 precursor film was systematically controlled with the guidance of the V–O phase diagram. The film undergoes a synergistic solid-state dewetting and pyrolysis process in the first step to form dispersed VO 2 particles, and then a crystallization process to achieve the preferred orientation, which allows fine control of the particle size and crystallinity by thickness control of the precursor film. Then, the MIT behavior of VO 2 particles with controlled sizes from 220 nm to 1.64 μm was systematically investigated. With decreasing size, the MIT temperature decreases and then increases with enlarged hysteresis. A minimum MIT temperature of 41 °C without hysteresis was realized. Size dependent crystallinity, strain and defect analyses showed that compressive stress dominates the MIT behavior of larger sized particles, while surface tensile stress and surface defect effects become prominent in smaller sized particles. This work provides a feasible strategy to control the size effect of dispersed VO 2 particle films and deepen our understanding on the MIT behavior in single domains.
doi_str_mv 10.1039/C9CE01013K
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9CE01013K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C9CE01013K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76K-1729d2c27a1bd7a642fbc091c6ee0afdecb2ca66a2dbeda37222912346d6c7123</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsFY3PsGshej8hIlZSqhaWujC4jbczNzgSJIpc6eLunLhG_iGPompFXR1D_ccvgOHsUsprqXQ5U1VVjMhhdSLIzaRuTHZrdD6-J8-ZWdEr0LIXEoxYR9P_g05DI7buKMEXecHn3bchiHF0PHQcudpg5HQ8ecVV3wDMXnbIfE2RN4Ht-0g-TDsoz2OhK_3Tz_Q_jv6KcJA_sdP2I8cSNt4KHwZ-zAieTpnJy10hBe_d8rW97N19ZgtVw_z6m6Z2cIsMlmo0imrCpCNK8Dkqm2sKKU1iAJah7ZRFowB5Rp0oAulVCmVzo0zthjFlF0dsDYGoohtvYm-h7irpaj389V_8-lvo15nhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Size and crystallinity control of dispersed VO 2 particles for modulation of metal–insulator transition temperature and hysteresis</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Zeng, Wen ; Lai, Haojie ; Chen, Tianyin ; Lu, Yueheng ; Liang, Zhihong ; Shi, Tingting ; Chen, Ke ; Liu, Pengyi ; Xie, Fangyan ; Chen, Jian ; Xu, Jianbin ; Chen, Qiulan ; Xie, Weiguang</creator><creatorcontrib>Zeng, Wen ; Lai, Haojie ; Chen, Tianyin ; Lu, Yueheng ; Liang, Zhihong ; Shi, Tingting ; Chen, Ke ; Liu, Pengyi ; Xie, Fangyan ; Chen, Jian ; Xu, Jianbin ; Chen, Qiulan ; Xie, Weiguang</creatorcontrib><description>VO 2 particles with a reduced size enable the optimization of its metal–insulator transition (MIT) temperature and hysteresis width. The accurate modulation of particle size and the underlying mechanism of transition behavior remains a critical issue. In this study, the annealing process of a V 2 O 5 precursor film was systematically controlled with the guidance of the V–O phase diagram. The film undergoes a synergistic solid-state dewetting and pyrolysis process in the first step to form dispersed VO 2 particles, and then a crystallization process to achieve the preferred orientation, which allows fine control of the particle size and crystallinity by thickness control of the precursor film. Then, the MIT behavior of VO 2 particles with controlled sizes from 220 nm to 1.64 μm was systematically investigated. With decreasing size, the MIT temperature decreases and then increases with enlarged hysteresis. A minimum MIT temperature of 41 °C without hysteresis was realized. Size dependent crystallinity, strain and defect analyses showed that compressive stress dominates the MIT behavior of larger sized particles, while surface tensile stress and surface defect effects become prominent in smaller sized particles. This work provides a feasible strategy to control the size effect of dispersed VO 2 particle films and deepen our understanding on the MIT behavior in single domains.</description><identifier>ISSN: 1466-8033</identifier><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/C9CE01013K</identifier><language>eng</language><ispartof>CrystEngComm, 2019-09, Vol.21 (38), p.5749-5756</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76K-1729d2c27a1bd7a642fbc091c6ee0afdecb2ca66a2dbeda37222912346d6c7123</citedby><cites>FETCH-LOGICAL-c76K-1729d2c27a1bd7a642fbc091c6ee0afdecb2ca66a2dbeda37222912346d6c7123</cites><orcidid>0000-0002-5686-6706 ; 0000-0002-3706-6359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zeng, Wen</creatorcontrib><creatorcontrib>Lai, Haojie</creatorcontrib><creatorcontrib>Chen, Tianyin</creatorcontrib><creatorcontrib>Lu, Yueheng</creatorcontrib><creatorcontrib>Liang, Zhihong</creatorcontrib><creatorcontrib>Shi, Tingting</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Liu, Pengyi</creatorcontrib><creatorcontrib>Xie, Fangyan</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Xu, Jianbin</creatorcontrib><creatorcontrib>Chen, Qiulan</creatorcontrib><creatorcontrib>Xie, Weiguang</creatorcontrib><title>Size and crystallinity control of dispersed VO 2 particles for modulation of metal–insulator transition temperature and hysteresis</title><title>CrystEngComm</title><description>VO 2 particles with a reduced size enable the optimization of its metal–insulator transition (MIT) temperature and hysteresis width. The accurate modulation of particle size and the underlying mechanism of transition behavior remains a critical issue. In this study, the annealing process of a V 2 O 5 precursor film was systematically controlled with the guidance of the V–O phase diagram. The film undergoes a synergistic solid-state dewetting and pyrolysis process in the first step to form dispersed VO 2 particles, and then a crystallization process to achieve the preferred orientation, which allows fine control of the particle size and crystallinity by thickness control of the precursor film. Then, the MIT behavior of VO 2 particles with controlled sizes from 220 nm to 1.64 μm was systematically investigated. With decreasing size, the MIT temperature decreases and then increases with enlarged hysteresis. A minimum MIT temperature of 41 °C without hysteresis was realized. Size dependent crystallinity, strain and defect analyses showed that compressive stress dominates the MIT behavior of larger sized particles, while surface tensile stress and surface defect effects become prominent in smaller sized particles. This work provides a feasible strategy to control the size effect of dispersed VO 2 particle films and deepen our understanding on the MIT behavior in single domains.</description><issn>1466-8033</issn><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Kw0AUhQdRsFY3PsGshej8hIlZSqhaWujC4jbczNzgSJIpc6eLunLhG_iGPompFXR1D_ccvgOHsUsprqXQ5U1VVjMhhdSLIzaRuTHZrdD6-J8-ZWdEr0LIXEoxYR9P_g05DI7buKMEXecHn3bchiHF0PHQcudpg5HQ8ecVV3wDMXnbIfE2RN4Ht-0g-TDsoz2OhK_3Tz_Q_jv6KcJA_sdP2I8cSNt4KHwZ-zAieTpnJy10hBe_d8rW97N19ZgtVw_z6m6Z2cIsMlmo0imrCpCNK8Dkqm2sKKU1iAJah7ZRFowB5Rp0oAulVCmVzo0zthjFlF0dsDYGoohtvYm-h7irpaj389V_8-lvo15nhQ</recordid><startdate>20190930</startdate><enddate>20190930</enddate><creator>Zeng, Wen</creator><creator>Lai, Haojie</creator><creator>Chen, Tianyin</creator><creator>Lu, Yueheng</creator><creator>Liang, Zhihong</creator><creator>Shi, Tingting</creator><creator>Chen, Ke</creator><creator>Liu, Pengyi</creator><creator>Xie, Fangyan</creator><creator>Chen, Jian</creator><creator>Xu, Jianbin</creator><creator>Chen, Qiulan</creator><creator>Xie, Weiguang</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5686-6706</orcidid><orcidid>https://orcid.org/0000-0002-3706-6359</orcidid></search><sort><creationdate>20190930</creationdate><title>Size and crystallinity control of dispersed VO 2 particles for modulation of metal–insulator transition temperature and hysteresis</title><author>Zeng, Wen ; Lai, Haojie ; Chen, Tianyin ; Lu, Yueheng ; Liang, Zhihong ; Shi, Tingting ; Chen, Ke ; Liu, Pengyi ; Xie, Fangyan ; Chen, Jian ; Xu, Jianbin ; Chen, Qiulan ; Xie, Weiguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76K-1729d2c27a1bd7a642fbc091c6ee0afdecb2ca66a2dbeda37222912346d6c7123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Wen</creatorcontrib><creatorcontrib>Lai, Haojie</creatorcontrib><creatorcontrib>Chen, Tianyin</creatorcontrib><creatorcontrib>Lu, Yueheng</creatorcontrib><creatorcontrib>Liang, Zhihong</creatorcontrib><creatorcontrib>Shi, Tingting</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Liu, Pengyi</creatorcontrib><creatorcontrib>Xie, Fangyan</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Xu, Jianbin</creatorcontrib><creatorcontrib>Chen, Qiulan</creatorcontrib><creatorcontrib>Xie, Weiguang</creatorcontrib><collection>CrossRef</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Wen</au><au>Lai, Haojie</au><au>Chen, Tianyin</au><au>Lu, Yueheng</au><au>Liang, Zhihong</au><au>Shi, Tingting</au><au>Chen, Ke</au><au>Liu, Pengyi</au><au>Xie, Fangyan</au><au>Chen, Jian</au><au>Xu, Jianbin</au><au>Chen, Qiulan</au><au>Xie, Weiguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size and crystallinity control of dispersed VO 2 particles for modulation of metal–insulator transition temperature and hysteresis</atitle><jtitle>CrystEngComm</jtitle><date>2019-09-30</date><risdate>2019</risdate><volume>21</volume><issue>38</issue><spage>5749</spage><epage>5756</epage><pages>5749-5756</pages><issn>1466-8033</issn><eissn>1466-8033</eissn><abstract>VO 2 particles with a reduced size enable the optimization of its metal–insulator transition (MIT) temperature and hysteresis width. The accurate modulation of particle size and the underlying mechanism of transition behavior remains a critical issue. In this study, the annealing process of a V 2 O 5 precursor film was systematically controlled with the guidance of the V–O phase diagram. The film undergoes a synergistic solid-state dewetting and pyrolysis process in the first step to form dispersed VO 2 particles, and then a crystallization process to achieve the preferred orientation, which allows fine control of the particle size and crystallinity by thickness control of the precursor film. Then, the MIT behavior of VO 2 particles with controlled sizes from 220 nm to 1.64 μm was systematically investigated. With decreasing size, the MIT temperature decreases and then increases with enlarged hysteresis. A minimum MIT temperature of 41 °C without hysteresis was realized. Size dependent crystallinity, strain and defect analyses showed that compressive stress dominates the MIT behavior of larger sized particles, while surface tensile stress and surface defect effects become prominent in smaller sized particles. This work provides a feasible strategy to control the size effect of dispersed VO 2 particle films and deepen our understanding on the MIT behavior in single domains.</abstract><doi>10.1039/C9CE01013K</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5686-6706</orcidid><orcidid>https://orcid.org/0000-0002-3706-6359</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1466-8033
ispartof CrystEngComm, 2019-09, Vol.21 (38), p.5749-5756
issn 1466-8033
1466-8033
language eng
recordid cdi_crossref_primary_10_1039_C9CE01013K
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Size and crystallinity control of dispersed VO 2 particles for modulation of metal–insulator transition temperature and hysteresis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20and%20crystallinity%20control%20of%20dispersed%20VO%202%20particles%20for%20modulation%20of%20metal%E2%80%93insulator%20transition%20temperature%20and%20hysteresis&rft.jtitle=CrystEngComm&rft.au=Zeng,%20Wen&rft.date=2019-09-30&rft.volume=21&rft.issue=38&rft.spage=5749&rft.epage=5756&rft.pages=5749-5756&rft.issn=1466-8033&rft.eissn=1466-8033&rft_id=info:doi/10.1039/C9CE01013K&rft_dat=%3Ccrossref%3E10_1039_C9CE01013K%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true