A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers

A new yet little understood threat to our ecosystems is microplastics. These microscopic particles accumulate in our oceans and in the end may find their way into the food chain. Even though their origin and the laws governing their formation have become ever more clear fast and reliable methodologi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical methods 2019-05, Vol.11 (17), p.2277-2285
Hauptverfasser: Hufnagl, Benedikt, Steiner, Dieter, Renner, Elisabeth, Löder, Martin G. J, Laforsch, Christian, Lohninger, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2285
container_issue 17
container_start_page 2277
container_title Analytical methods
container_volume 11
creator Hufnagl, Benedikt
Steiner, Dieter
Renner, Elisabeth
Löder, Martin G. J
Laforsch, Christian
Lohninger, Hans
description A new yet little understood threat to our ecosystems is microplastics. These microscopic particles accumulate in our oceans and in the end may find their way into the food chain. Even though their origin and the laws governing their formation have become ever more clear fast and reliable methodologies for their analysis and identification are still lacking or at an early stage of development. The first automatic approaches to analyze μFTIR images of microplastics which have been enriched on membrane filters are promising and provide the impetus to put further effort into their development. In this paper we present a methodology which allows discrimination between different polymer types and measurement of their abundance and their size distributions with high accuracy. In particular we apply random decision forest classifiers and compute a multiclass model for the polymers polyethylene, polypropylene, poly(methyl methacrylate), polyacrylonitrile and polystyrene. Further classification results of the analyzed μFTIR images are given for comparability. The study also briefly discusses common issues that can arise in classification such as the curse of dimensionality and label noise. A new yet little understood threat to our ecosystems is microplastics.
doi_str_mv 10.1039/c9ay00252a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9AY00252A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215488978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-510c25119627ad079f99ce496ded5c58f5c9f4f9e3e7fdfa9e91bc0603f080e83</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKsX70LEm7Ca7PccS_ELCl704GmJyaRN2U3WZCv0N_inzVqpN08zMM8773wQcs7ZDWcZ3EoQW8bSIhUHZMKrAhIoKzjc5yU7JichrBkrISv5hHzNaIfDyinXuuWWaufpsEKqRRioUWgHo40Ug3GWCqto56wZnDd2SZ2mnZHe9W1kjQzUWIr203hnu6gTLQ2i61sMdBNG3ke966hCacLYLlphNJFRHqIJ-nBKjrRoA579xil5vb97mT8mi-eHp_lskcic8SEpOJNpwTmUaSUUq0ADSMyhVKgKWdS6kKBzDZhhpZUWgMDfJStZplnNsM6m5GrXt_fuYxOHaNZu4220bNKUF3ldQzVS1zsq7hiCR9303nTCbxvOmvHYzRxmbz_HnkX4Ygf7IPfc3zNi_fK_etMrnX0DcRSLOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215488978</pqid></control><display><type>article</type><title>A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hufnagl, Benedikt ; Steiner, Dieter ; Renner, Elisabeth ; Löder, Martin G. J ; Laforsch, Christian ; Lohninger, Hans</creator><creatorcontrib>Hufnagl, Benedikt ; Steiner, Dieter ; Renner, Elisabeth ; Löder, Martin G. J ; Laforsch, Christian ; Lohninger, Hans</creatorcontrib><description>A new yet little understood threat to our ecosystems is microplastics. These microscopic particles accumulate in our oceans and in the end may find their way into the food chain. Even though their origin and the laws governing their formation have become ever more clear fast and reliable methodologies for their analysis and identification are still lacking or at an early stage of development. The first automatic approaches to analyze μFTIR images of microplastics which have been enriched on membrane filters are promising and provide the impetus to put further effort into their development. In this paper we present a methodology which allows discrimination between different polymer types and measurement of their abundance and their size distributions with high accuracy. In particular we apply random decision forest classifiers and compute a multiclass model for the polymers polyethylene, polypropylene, poly(methyl methacrylate), polyacrylonitrile and polystyrene. Further classification results of the analyzed μFTIR images are given for comparability. The study also briefly discusses common issues that can arise in classification such as the curse of dimensionality and label noise. A new yet little understood threat to our ecosystems is microplastics.</description><identifier>ISSN: 1759-9660</identifier><identifier>EISSN: 1759-9679</identifier><identifier>DOI: 10.1039/c9ay00252a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Classification ; Classifiers ; Datasets ; Decision trees ; Environmental monitoring ; Food chains ; Image classification ; Marine ecosystems ; Membrane filters ; Microplastics ; Oceans ; Polyacrylonitrile ; Polyethylene ; Polyethylenes ; Polymers ; Polymethyl methacrylate ; Polypropylene ; Polystyrene ; Polystyrene resins ; Video data</subject><ispartof>Analytical methods, 2019-05, Vol.11 (17), p.2277-2285</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-510c25119627ad079f99ce496ded5c58f5c9f4f9e3e7fdfa9e91bc0603f080e83</citedby><cites>FETCH-LOGICAL-c401t-510c25119627ad079f99ce496ded5c58f5c9f4f9e3e7fdfa9e91bc0603f080e83</cites><orcidid>0000-0001-9056-8254 ; 0000-0002-5889-4647 ; 0000-0002-1470-5787 ; 0000-0002-4359-5767 ; 0000-0002-3856-6662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hufnagl, Benedikt</creatorcontrib><creatorcontrib>Steiner, Dieter</creatorcontrib><creatorcontrib>Renner, Elisabeth</creatorcontrib><creatorcontrib>Löder, Martin G. J</creatorcontrib><creatorcontrib>Laforsch, Christian</creatorcontrib><creatorcontrib>Lohninger, Hans</creatorcontrib><title>A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers</title><title>Analytical methods</title><description>A new yet little understood threat to our ecosystems is microplastics. These microscopic particles accumulate in our oceans and in the end may find their way into the food chain. Even though their origin and the laws governing their formation have become ever more clear fast and reliable methodologies for their analysis and identification are still lacking or at an early stage of development. The first automatic approaches to analyze μFTIR images of microplastics which have been enriched on membrane filters are promising and provide the impetus to put further effort into their development. In this paper we present a methodology which allows discrimination between different polymer types and measurement of their abundance and their size distributions with high accuracy. In particular we apply random decision forest classifiers and compute a multiclass model for the polymers polyethylene, polypropylene, poly(methyl methacrylate), polyacrylonitrile and polystyrene. Further classification results of the analyzed μFTIR images are given for comparability. The study also briefly discusses common issues that can arise in classification such as the curse of dimensionality and label noise. A new yet little understood threat to our ecosystems is microplastics.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Environmental monitoring</subject><subject>Food chains</subject><subject>Image classification</subject><subject>Marine ecosystems</subject><subject>Membrane filters</subject><subject>Microplastics</subject><subject>Oceans</subject><subject>Polyacrylonitrile</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Polypropylene</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Video data</subject><issn>1759-9660</issn><issn>1759-9679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhoMoWKsX70LEm7Ca7PccS_ELCl704GmJyaRN2U3WZCv0N_inzVqpN08zMM8773wQcs7ZDWcZ3EoQW8bSIhUHZMKrAhIoKzjc5yU7JichrBkrISv5hHzNaIfDyinXuuWWaufpsEKqRRioUWgHo40Ug3GWCqto56wZnDd2SZ2mnZHe9W1kjQzUWIr203hnu6gTLQ2i61sMdBNG3ke966hCacLYLlphNJFRHqIJ-nBKjrRoA579xil5vb97mT8mi-eHp_lskcic8SEpOJNpwTmUaSUUq0ADSMyhVKgKWdS6kKBzDZhhpZUWgMDfJStZplnNsM6m5GrXt_fuYxOHaNZu4220bNKUF3ldQzVS1zsq7hiCR9303nTCbxvOmvHYzRxmbz_HnkX4Ygf7IPfc3zNi_fK_etMrnX0DcRSLOA</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Hufnagl, Benedikt</creator><creator>Steiner, Dieter</creator><creator>Renner, Elisabeth</creator><creator>Löder, Martin G. J</creator><creator>Laforsch, Christian</creator><creator>Lohninger, Hans</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9056-8254</orcidid><orcidid>https://orcid.org/0000-0002-5889-4647</orcidid><orcidid>https://orcid.org/0000-0002-1470-5787</orcidid><orcidid>https://orcid.org/0000-0002-4359-5767</orcidid><orcidid>https://orcid.org/0000-0002-3856-6662</orcidid></search><sort><creationdate>20190507</creationdate><title>A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers</title><author>Hufnagl, Benedikt ; Steiner, Dieter ; Renner, Elisabeth ; Löder, Martin G. J ; Laforsch, Christian ; Lohninger, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-510c25119627ad079f99ce496ded5c58f5c9f4f9e3e7fdfa9e91bc0603f080e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Environmental monitoring</topic><topic>Food chains</topic><topic>Image classification</topic><topic>Marine ecosystems</topic><topic>Membrane filters</topic><topic>Microplastics</topic><topic>Oceans</topic><topic>Polyacrylonitrile</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Polypropylene</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hufnagl, Benedikt</creatorcontrib><creatorcontrib>Steiner, Dieter</creatorcontrib><creatorcontrib>Renner, Elisabeth</creatorcontrib><creatorcontrib>Löder, Martin G. J</creatorcontrib><creatorcontrib>Laforsch, Christian</creatorcontrib><creatorcontrib>Lohninger, Hans</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hufnagl, Benedikt</au><au>Steiner, Dieter</au><au>Renner, Elisabeth</au><au>Löder, Martin G. J</au><au>Laforsch, Christian</au><au>Lohninger, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers</atitle><jtitle>Analytical methods</jtitle><date>2019-05-07</date><risdate>2019</risdate><volume>11</volume><issue>17</issue><spage>2277</spage><epage>2285</epage><pages>2277-2285</pages><issn>1759-9660</issn><eissn>1759-9679</eissn><abstract>A new yet little understood threat to our ecosystems is microplastics. These microscopic particles accumulate in our oceans and in the end may find their way into the food chain. Even though their origin and the laws governing their formation have become ever more clear fast and reliable methodologies for their analysis and identification are still lacking or at an early stage of development. The first automatic approaches to analyze μFTIR images of microplastics which have been enriched on membrane filters are promising and provide the impetus to put further effort into their development. In this paper we present a methodology which allows discrimination between different polymer types and measurement of their abundance and their size distributions with high accuracy. In particular we apply random decision forest classifiers and compute a multiclass model for the polymers polyethylene, polypropylene, poly(methyl methacrylate), polyacrylonitrile and polystyrene. Further classification results of the analyzed μFTIR images are given for comparability. The study also briefly discusses common issues that can arise in classification such as the curse of dimensionality and label noise. A new yet little understood threat to our ecosystems is microplastics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ay00252a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9056-8254</orcidid><orcidid>https://orcid.org/0000-0002-5889-4647</orcidid><orcidid>https://orcid.org/0000-0002-1470-5787</orcidid><orcidid>https://orcid.org/0000-0002-4359-5767</orcidid><orcidid>https://orcid.org/0000-0002-3856-6662</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1759-9660
ispartof Analytical methods, 2019-05, Vol.11 (17), p.2277-2285
issn 1759-9660
1759-9679
language eng
recordid cdi_crossref_primary_10_1039_C9AY00252A
source Royal Society Of Chemistry Journals 2008-
subjects Classification
Classifiers
Datasets
Decision trees
Environmental monitoring
Food chains
Image classification
Marine ecosystems
Membrane filters
Microplastics
Oceans
Polyacrylonitrile
Polyethylene
Polyethylenes
Polymers
Polymethyl methacrylate
Polypropylene
Polystyrene
Polystyrene resins
Video data
title A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20for%20the%20fast%20identification%20and%20monitoring%20of%20microplastics%20in%20environmental%20samples%20using%20random%20decision%20forest%20classifiers&rft.jtitle=Analytical%20methods&rft.au=Hufnagl,%20Benedikt&rft.date=2019-05-07&rft.volume=11&rft.issue=17&rft.spage=2277&rft.epage=2285&rft.pages=2277-2285&rft.issn=1759-9660&rft.eissn=1759-9679&rft_id=info:doi/10.1039/c9ay00252a&rft_dat=%3Cproquest_cross%3E2215488978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215488978&rft_id=info:pmid/&rfr_iscdi=true