A solvent-free and vacuum-free melt-processing method to fabricate organic semiconducting layers with large crystal size for organic electronic applications

We report on an improved melt-processing method to prepare organic semiconducting layers with large crystal size and enhanced charge carrier mobilities. The organic compound used in this work is a solution-processable oligo( p -phenylene vinylene) derivative substituted at both ends with pyrene moie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2019-03, Vol.7 (11), p.319-3198
Hauptverfasser: Ribierre, Jean-Charles, Li, Zhao, Liu, Xiao, Lacaze, Emmanuelle, Heinrich, Benoît, Méry, Stephane, Sleczkowski, Piotr, Xiao, Yiming, Lafolet, Frédéric, Hashizume, Daisuke, Aoyama, Tetsuya, Uchiyama, Masanobu, Wu, Jeong Weon, Zaborova, Elena, Fages, Frédéric, D'Aléo, Anthony, Mathevet, Fabrice, Adachi, Chihaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3198
container_issue 11
container_start_page 319
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 7
creator Ribierre, Jean-Charles
Li, Zhao
Liu, Xiao
Lacaze, Emmanuelle
Heinrich, Benoît
Méry, Stephane
Sleczkowski, Piotr
Xiao, Yiming
Lafolet, Frédéric
Hashizume, Daisuke
Aoyama, Tetsuya
Uchiyama, Masanobu
Wu, Jeong Weon
Zaborova, Elena
Fages, Frédéric
D'Aléo, Anthony
Mathevet, Fabrice
Adachi, Chihaya
description We report on an improved melt-processing method to prepare organic semiconducting layers with large crystal size and enhanced charge carrier mobilities. The organic compound used in this work is a solution-processable oligo( p -phenylene vinylene) derivative substituted at both ends with pyrene moieties. Accurate control of the temperature during the recrystallization of this compound from the melt enables the formation of large single crystal monodomains in thin films. The melt-processed organic layer shows higher mobilities in transistor configuration than in spin-coated films, which can be attributed to the presence of large-size crystalline monodomains as evidenced by X-ray diffraction measurements. We also investigated the photophysical properties of this material in spin-coated and melted films and found an increase of the photoluminescence quantum yield with the size of the crystals in the organic layer. The advantage of this method over the spin coating also allowed observation of amplified spontaneous emission that was only achieved in the melted film due to its improved luminescence efficiency. Overall, this study demonstrates a simple and versatile method, which does not require the use of any solvent and vacuum, to fabricate organic layers with large crystal size, suitable for the realization of organic electronic and light-emitting devices. We report on an improved melt-processing method to prepare organic semiconducting layers with large crystal size.
doi_str_mv 10.1039/c8tc04834g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8TC04834G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191282983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-b2c619f958483c2c0f13bba9737ad119f0ee52a27b190d165014d1898361cec43</originalsourceid><addsrcrecordid>eNpFkUtLxDAUhYsoKOrGvRBwpVDNo49kOQy-YMCNrkt6ezsT6TRjko6Mv8Ufa2plzCbn3nw55OYkyQWjt4wKdQcyAM2kyJYHyQmnOU3LXGSHe82L4-Tc-3cal2SFLNRJ8j0j3nZb7EPaOkSi-4ZsNQzDeqrX2IV04yyg96ZfxjqsbEOCJa2unQEdkFi31L0B4nFtwPbNAGFEO71D58mnCauo3RIJuJ0PuiPefCFprdvfxA4hODtKvdl0o62xvT9LjlrdeTz_20-Tt4f71_lTunh5fJ7PFikIloe05lAw1apcxuGBA22ZqGutSlHqhsUTiphzzcuaKdqwIqcsa5hUUhQMEDJxmlxPvivdVRtn1trtKqtN9TRbVGOPclGUKldbFtmriY2f8jGgD9W7HVwfn1dxphiXPPpG6maiwFnvHbZ7W0arMaxqLl_nv2E9Rvhygp2HPfcfpvgB442TIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191282983</pqid></control><display><type>article</type><title>A solvent-free and vacuum-free melt-processing method to fabricate organic semiconducting layers with large crystal size for organic electronic applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ribierre, Jean-Charles ; Li, Zhao ; Liu, Xiao ; Lacaze, Emmanuelle ; Heinrich, Benoît ; Méry, Stephane ; Sleczkowski, Piotr ; Xiao, Yiming ; Lafolet, Frédéric ; Hashizume, Daisuke ; Aoyama, Tetsuya ; Uchiyama, Masanobu ; Wu, Jeong Weon ; Zaborova, Elena ; Fages, Frédéric ; D'Aléo, Anthony ; Mathevet, Fabrice ; Adachi, Chihaya</creator><creatorcontrib>Ribierre, Jean-Charles ; Li, Zhao ; Liu, Xiao ; Lacaze, Emmanuelle ; Heinrich, Benoît ; Méry, Stephane ; Sleczkowski, Piotr ; Xiao, Yiming ; Lafolet, Frédéric ; Hashizume, Daisuke ; Aoyama, Tetsuya ; Uchiyama, Masanobu ; Wu, Jeong Weon ; Zaborova, Elena ; Fages, Frédéric ; D'Aléo, Anthony ; Mathevet, Fabrice ; Adachi, Chihaya</creatorcontrib><description>We report on an improved melt-processing method to prepare organic semiconducting layers with large crystal size and enhanced charge carrier mobilities. The organic compound used in this work is a solution-processable oligo( p -phenylene vinylene) derivative substituted at both ends with pyrene moieties. Accurate control of the temperature during the recrystallization of this compound from the melt enables the formation of large single crystal monodomains in thin films. The melt-processed organic layer shows higher mobilities in transistor configuration than in spin-coated films, which can be attributed to the presence of large-size crystalline monodomains as evidenced by X-ray diffraction measurements. We also investigated the photophysical properties of this material in spin-coated and melted films and found an increase of the photoluminescence quantum yield with the size of the crystals in the organic layer. The advantage of this method over the spin coating also allowed observation of amplified spontaneous emission that was only achieved in the melted film due to its improved luminescence efficiency. Overall, this study demonstrates a simple and versatile method, which does not require the use of any solvent and vacuum, to fabricate organic layers with large crystal size, suitable for the realization of organic electronic and light-emitting devices. We report on an improved melt-processing method to prepare organic semiconducting layers with large crystal size.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c8tc04834g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical Sciences ; Crystal structure ; Crystals ; Current carriers ; Electronic devices ; Field effect transistors ; Light emission ; Material chemistry ; Organic compounds ; Photoluminescence ; Recrystallization ; Semiconductor devices ; Single crystals ; Small angle X ray scattering ; Solvents ; Spin coating ; Spontaneous emission ; Thin films ; X-ray diffraction</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2019-03, Vol.7 (11), p.319-3198</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-b2c619f958483c2c0f13bba9737ad119f0ee52a27b190d165014d1898361cec43</citedby><cites>FETCH-LOGICAL-c315t-b2c619f958483c2c0f13bba9737ad119f0ee52a27b190d165014d1898361cec43</cites><orcidid>0000-0001-6313-2308 ; 0000-0003-2013-0710 ; 0000-0001-6795-2733 ; 0000-0001-6117-9604 ; 0000-0001-7288-3795 ; 0000-0001-5212-9728 ; 0000-0001-8410-8729 ; 0000-0002-3813-1335 ; 0000-0002-9353-3417 ; 0000-0002-9922-1430 ; 0000-0001-7027-841X ; 0000-0001-6385-5944 ; 0000-0002-8380-8288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02367959$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ribierre, Jean-Charles</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Lacaze, Emmanuelle</creatorcontrib><creatorcontrib>Heinrich, Benoît</creatorcontrib><creatorcontrib>Méry, Stephane</creatorcontrib><creatorcontrib>Sleczkowski, Piotr</creatorcontrib><creatorcontrib>Xiao, Yiming</creatorcontrib><creatorcontrib>Lafolet, Frédéric</creatorcontrib><creatorcontrib>Hashizume, Daisuke</creatorcontrib><creatorcontrib>Aoyama, Tetsuya</creatorcontrib><creatorcontrib>Uchiyama, Masanobu</creatorcontrib><creatorcontrib>Wu, Jeong Weon</creatorcontrib><creatorcontrib>Zaborova, Elena</creatorcontrib><creatorcontrib>Fages, Frédéric</creatorcontrib><creatorcontrib>D'Aléo, Anthony</creatorcontrib><creatorcontrib>Mathevet, Fabrice</creatorcontrib><creatorcontrib>Adachi, Chihaya</creatorcontrib><title>A solvent-free and vacuum-free melt-processing method to fabricate organic semiconducting layers with large crystal size for organic electronic applications</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>We report on an improved melt-processing method to prepare organic semiconducting layers with large crystal size and enhanced charge carrier mobilities. The organic compound used in this work is a solution-processable oligo( p -phenylene vinylene) derivative substituted at both ends with pyrene moieties. Accurate control of the temperature during the recrystallization of this compound from the melt enables the formation of large single crystal monodomains in thin films. The melt-processed organic layer shows higher mobilities in transistor configuration than in spin-coated films, which can be attributed to the presence of large-size crystalline monodomains as evidenced by X-ray diffraction measurements. We also investigated the photophysical properties of this material in spin-coated and melted films and found an increase of the photoluminescence quantum yield with the size of the crystals in the organic layer. The advantage of this method over the spin coating also allowed observation of amplified spontaneous emission that was only achieved in the melted film due to its improved luminescence efficiency. Overall, this study demonstrates a simple and versatile method, which does not require the use of any solvent and vacuum, to fabricate organic layers with large crystal size, suitable for the realization of organic electronic and light-emitting devices. We report on an improved melt-processing method to prepare organic semiconducting layers with large crystal size.</description><subject>Chemical Sciences</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Electronic devices</subject><subject>Field effect transistors</subject><subject>Light emission</subject><subject>Material chemistry</subject><subject>Organic compounds</subject><subject>Photoluminescence</subject><subject>Recrystallization</subject><subject>Semiconductor devices</subject><subject>Single crystals</subject><subject>Small angle X ray scattering</subject><subject>Solvents</subject><subject>Spin coating</subject><subject>Spontaneous emission</subject><subject>Thin films</subject><subject>X-ray diffraction</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkUtLxDAUhYsoKOrGvRBwpVDNo49kOQy-YMCNrkt6ezsT6TRjko6Mv8Ufa2plzCbn3nw55OYkyQWjt4wKdQcyAM2kyJYHyQmnOU3LXGSHe82L4-Tc-3cal2SFLNRJ8j0j3nZb7EPaOkSi-4ZsNQzDeqrX2IV04yyg96ZfxjqsbEOCJa2unQEdkFi31L0B4nFtwPbNAGFEO71D58mnCauo3RIJuJ0PuiPefCFprdvfxA4hODtKvdl0o62xvT9LjlrdeTz_20-Tt4f71_lTunh5fJ7PFikIloe05lAw1apcxuGBA22ZqGutSlHqhsUTiphzzcuaKdqwIqcsa5hUUhQMEDJxmlxPvivdVRtn1trtKqtN9TRbVGOPclGUKldbFtmriY2f8jGgD9W7HVwfn1dxphiXPPpG6maiwFnvHbZ7W0arMaxqLl_nv2E9Rvhygp2HPfcfpvgB442TIQ</recordid><startdate>20190314</startdate><enddate>20190314</enddate><creator>Ribierre, Jean-Charles</creator><creator>Li, Zhao</creator><creator>Liu, Xiao</creator><creator>Lacaze, Emmanuelle</creator><creator>Heinrich, Benoît</creator><creator>Méry, Stephane</creator><creator>Sleczkowski, Piotr</creator><creator>Xiao, Yiming</creator><creator>Lafolet, Frédéric</creator><creator>Hashizume, Daisuke</creator><creator>Aoyama, Tetsuya</creator><creator>Uchiyama, Masanobu</creator><creator>Wu, Jeong Weon</creator><creator>Zaborova, Elena</creator><creator>Fages, Frédéric</creator><creator>D'Aléo, Anthony</creator><creator>Mathevet, Fabrice</creator><creator>Adachi, Chihaya</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6313-2308</orcidid><orcidid>https://orcid.org/0000-0003-2013-0710</orcidid><orcidid>https://orcid.org/0000-0001-6795-2733</orcidid><orcidid>https://orcid.org/0000-0001-6117-9604</orcidid><orcidid>https://orcid.org/0000-0001-7288-3795</orcidid><orcidid>https://orcid.org/0000-0001-5212-9728</orcidid><orcidid>https://orcid.org/0000-0001-8410-8729</orcidid><orcidid>https://orcid.org/0000-0002-3813-1335</orcidid><orcidid>https://orcid.org/0000-0002-9353-3417</orcidid><orcidid>https://orcid.org/0000-0002-9922-1430</orcidid><orcidid>https://orcid.org/0000-0001-7027-841X</orcidid><orcidid>https://orcid.org/0000-0001-6385-5944</orcidid><orcidid>https://orcid.org/0000-0002-8380-8288</orcidid></search><sort><creationdate>20190314</creationdate><title>A solvent-free and vacuum-free melt-processing method to fabricate organic semiconducting layers with large crystal size for organic electronic applications</title><author>Ribierre, Jean-Charles ; Li, Zhao ; Liu, Xiao ; Lacaze, Emmanuelle ; Heinrich, Benoît ; Méry, Stephane ; Sleczkowski, Piotr ; Xiao, Yiming ; Lafolet, Frédéric ; Hashizume, Daisuke ; Aoyama, Tetsuya ; Uchiyama, Masanobu ; Wu, Jeong Weon ; Zaborova, Elena ; Fages, Frédéric ; D'Aléo, Anthony ; Mathevet, Fabrice ; Adachi, Chihaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-b2c619f958483c2c0f13bba9737ad119f0ee52a27b190d165014d1898361cec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical Sciences</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Electronic devices</topic><topic>Field effect transistors</topic><topic>Light emission</topic><topic>Material chemistry</topic><topic>Organic compounds</topic><topic>Photoluminescence</topic><topic>Recrystallization</topic><topic>Semiconductor devices</topic><topic>Single crystals</topic><topic>Small angle X ray scattering</topic><topic>Solvents</topic><topic>Spin coating</topic><topic>Spontaneous emission</topic><topic>Thin films</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribierre, Jean-Charles</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Lacaze, Emmanuelle</creatorcontrib><creatorcontrib>Heinrich, Benoît</creatorcontrib><creatorcontrib>Méry, Stephane</creatorcontrib><creatorcontrib>Sleczkowski, Piotr</creatorcontrib><creatorcontrib>Xiao, Yiming</creatorcontrib><creatorcontrib>Lafolet, Frédéric</creatorcontrib><creatorcontrib>Hashizume, Daisuke</creatorcontrib><creatorcontrib>Aoyama, Tetsuya</creatorcontrib><creatorcontrib>Uchiyama, Masanobu</creatorcontrib><creatorcontrib>Wu, Jeong Weon</creatorcontrib><creatorcontrib>Zaborova, Elena</creatorcontrib><creatorcontrib>Fages, Frédéric</creatorcontrib><creatorcontrib>D'Aléo, Anthony</creatorcontrib><creatorcontrib>Mathevet, Fabrice</creatorcontrib><creatorcontrib>Adachi, Chihaya</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribierre, Jean-Charles</au><au>Li, Zhao</au><au>Liu, Xiao</au><au>Lacaze, Emmanuelle</au><au>Heinrich, Benoît</au><au>Méry, Stephane</au><au>Sleczkowski, Piotr</au><au>Xiao, Yiming</au><au>Lafolet, Frédéric</au><au>Hashizume, Daisuke</au><au>Aoyama, Tetsuya</au><au>Uchiyama, Masanobu</au><au>Wu, Jeong Weon</au><au>Zaborova, Elena</au><au>Fages, Frédéric</au><au>D'Aléo, Anthony</au><au>Mathevet, Fabrice</au><au>Adachi, Chihaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A solvent-free and vacuum-free melt-processing method to fabricate organic semiconducting layers with large crystal size for organic electronic applications</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2019-03-14</date><risdate>2019</risdate><volume>7</volume><issue>11</issue><spage>319</spage><epage>3198</epage><pages>319-3198</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>We report on an improved melt-processing method to prepare organic semiconducting layers with large crystal size and enhanced charge carrier mobilities. The organic compound used in this work is a solution-processable oligo( p -phenylene vinylene) derivative substituted at both ends with pyrene moieties. Accurate control of the temperature during the recrystallization of this compound from the melt enables the formation of large single crystal monodomains in thin films. The melt-processed organic layer shows higher mobilities in transistor configuration than in spin-coated films, which can be attributed to the presence of large-size crystalline monodomains as evidenced by X-ray diffraction measurements. We also investigated the photophysical properties of this material in spin-coated and melted films and found an increase of the photoluminescence quantum yield with the size of the crystals in the organic layer. The advantage of this method over the spin coating also allowed observation of amplified spontaneous emission that was only achieved in the melted film due to its improved luminescence efficiency. Overall, this study demonstrates a simple and versatile method, which does not require the use of any solvent and vacuum, to fabricate organic layers with large crystal size, suitable for the realization of organic electronic and light-emitting devices. We report on an improved melt-processing method to prepare organic semiconducting layers with large crystal size.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8tc04834g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6313-2308</orcidid><orcidid>https://orcid.org/0000-0003-2013-0710</orcidid><orcidid>https://orcid.org/0000-0001-6795-2733</orcidid><orcidid>https://orcid.org/0000-0001-6117-9604</orcidid><orcidid>https://orcid.org/0000-0001-7288-3795</orcidid><orcidid>https://orcid.org/0000-0001-5212-9728</orcidid><orcidid>https://orcid.org/0000-0001-8410-8729</orcidid><orcidid>https://orcid.org/0000-0002-3813-1335</orcidid><orcidid>https://orcid.org/0000-0002-9353-3417</orcidid><orcidid>https://orcid.org/0000-0002-9922-1430</orcidid><orcidid>https://orcid.org/0000-0001-7027-841X</orcidid><orcidid>https://orcid.org/0000-0001-6385-5944</orcidid><orcidid>https://orcid.org/0000-0002-8380-8288</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2019-03, Vol.7 (11), p.319-3198
issn 2050-7526
2050-7534
language eng
recordid cdi_crossref_primary_10_1039_C8TC04834G
source Royal Society Of Chemistry Journals 2008-
subjects Chemical Sciences
Crystal structure
Crystals
Current carriers
Electronic devices
Field effect transistors
Light emission
Material chemistry
Organic compounds
Photoluminescence
Recrystallization
Semiconductor devices
Single crystals
Small angle X ray scattering
Solvents
Spin coating
Spontaneous emission
Thin films
X-ray diffraction
title A solvent-free and vacuum-free melt-processing method to fabricate organic semiconducting layers with large crystal size for organic electronic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20solvent-free%20and%20vacuum-free%20melt-processing%20method%20to%20fabricate%20organic%20semiconducting%20layers%20with%20large%20crystal%20size%20for%20organic%20electronic%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Ribierre,%20Jean-Charles&rft.date=2019-03-14&rft.volume=7&rft.issue=11&rft.spage=319&rft.epage=3198&rft.pages=319-3198&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c8tc04834g&rft_dat=%3Cproquest_cross%3E2191282983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191282983&rft_id=info:pmid/&rfr_iscdi=true