Rational design of Na(Li 1/3 Mn 1/2 Cr 1/6 )O 2 exhibiting cation–anion-coupled redox reactions with superior electrochemical, thermodynamic, atomic, and chemomechanical properties for advanced sodium-ion batteries

Anionic redox reactions (O 2− /O − ), an alternative to conventional cationic redox reactions (M n+ /M (n+1)+ ; M: transition metal), have recently been identified as essential to achieve high energy density cathodes for sodium-ion batteries (SIBs). To overcome the drawbacks of anionic redox reactio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018-10, Vol.6 (37), p.18036-18043
Hauptverfasser: Kim, Duho, Cho, Maenghyo, Cho, Kyeongjae
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18043
container_issue 37
container_start_page 18036
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Kim, Duho
Cho, Maenghyo
Cho, Kyeongjae
description Anionic redox reactions (O 2− /O − ), an alternative to conventional cationic redox reactions (M n+ /M (n+1)+ ; M: transition metal), have recently been identified as essential to achieve high energy density cathodes for sodium-ion batteries (SIBs). To overcome the drawbacks of anionic redox reactions leading to phase change and separation in the newly discovered Na(Li 1/3 Mn 2/3 )O 2 material (NLMO, ∼4.2 V vs. Na/Na + with a high charge capacity of 190 mAh g −1 ), we have rationally designed high energy density Na(Li 1/3 Mn 1/2 Cr 1/6 )O 2 (NLMCO) in which the Cr 3d-electron is coupled with the labile O 2p-electron coordinated with Mn 4+ for charge compensation during desodiation processes. NLMCO exhibits reduced phase change and separation, and chemomechanical strain and stress compared to NLMO and is thus expected to show high electrochemical performance, where the formation of short O–O bonds is not observed. By correlating the thermodynamic energy behavior with the redox mechanism in NLMO, it is concluded that our systematically designed cation–anion-coupled NLMCO is an excellent cathode material, introducing advanced materials of formula Na(Li 1/3 M 2/3(1−y) M cy )O 2 (M and M c : transition metals with stabilized M 4+ species and cationic redox active M c 4+ species) for next-generation SIBs.
doi_str_mv 10.1039/C8TA02435A
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8TA02435A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C8TA02435A</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161t-661a0b8ccc78356a987e8ab4e840ca6b2cdc48cce8d6b2e433ea458fe8e87de93</originalsourceid><addsrcrecordid>eNpFkU1OwzAQhSMEElXphhPMElBDnZ-mzrKq-JMKlVBZRxN70hglcWW70O64A5djzUlwAYEX_saeN-8tJghOI3YZsSQfzfhyyuI0GU8Pgl7MxiycpHl2-FdzfhwMrH1m_nDGsjzvBR-P6JTusAFJVq060BU84NlcQTRK4L7ziGFmPDI4X0AMtK1VqZzqViC-Rz_f3rHzDIXerBuSYEjqrb9R7NsWXpWrwW7WZJQ2QA0JZ7SoqVUCmyG4mkyr5a5D_zEEdPqHnYS9SLckah_gtbA22rs4RRYqb4XyBTvhE62WatOGPg1KdM4HkT0JjipsLA1-2Q-erq-Ws9twvri5m03noYiyyIVZFiEruRBiwpNxhjmfEMcyJZ4ygVkZCylS3yYu_YPSJCFMx7wiTnwiKU_6wcWPrzDaWkNVsTaqRbMrIlbs11L8ryX5Ahe8hIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational design of Na(Li 1/3 Mn 1/2 Cr 1/6 )O 2 exhibiting cation–anion-coupled redox reactions with superior electrochemical, thermodynamic, atomic, and chemomechanical properties for advanced sodium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kim, Duho ; Cho, Maenghyo ; Cho, Kyeongjae</creator><creatorcontrib>Kim, Duho ; Cho, Maenghyo ; Cho, Kyeongjae</creatorcontrib><description>Anionic redox reactions (O 2− /O − ), an alternative to conventional cationic redox reactions (M n+ /M (n+1)+ ; M: transition metal), have recently been identified as essential to achieve high energy density cathodes for sodium-ion batteries (SIBs). To overcome the drawbacks of anionic redox reactions leading to phase change and separation in the newly discovered Na(Li 1/3 Mn 2/3 )O 2 material (NLMO, ∼4.2 V vs. Na/Na + with a high charge capacity of 190 mAh g −1 ), we have rationally designed high energy density Na(Li 1/3 Mn 1/2 Cr 1/6 )O 2 (NLMCO) in which the Cr 3d-electron is coupled with the labile O 2p-electron coordinated with Mn 4+ for charge compensation during desodiation processes. NLMCO exhibits reduced phase change and separation, and chemomechanical strain and stress compared to NLMO and is thus expected to show high electrochemical performance, where the formation of short O–O bonds is not observed. By correlating the thermodynamic energy behavior with the redox mechanism in NLMO, it is concluded that our systematically designed cation–anion-coupled NLMCO is an excellent cathode material, introducing advanced materials of formula Na(Li 1/3 M 2/3(1−y) M cy )O 2 (M and M c : transition metals with stabilized M 4+ species and cationic redox active M c 4+ species) for next-generation SIBs.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA02435A</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018-10, Vol.6 (37), p.18036-18043</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c161t-661a0b8ccc78356a987e8ab4e840ca6b2cdc48cce8d6b2e433ea458fe8e87de93</citedby><cites>FETCH-LOGICAL-c161t-661a0b8ccc78356a987e8ab4e840ca6b2cdc48cce8d6b2e433ea458fe8e87de93</cites><orcidid>0000-0002-7640-9457 ; 0000-0003-2698-7774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Duho</creatorcontrib><creatorcontrib>Cho, Maenghyo</creatorcontrib><creatorcontrib>Cho, Kyeongjae</creatorcontrib><title>Rational design of Na(Li 1/3 Mn 1/2 Cr 1/6 )O 2 exhibiting cation–anion-coupled redox reactions with superior electrochemical, thermodynamic, atomic, and chemomechanical properties for advanced sodium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Anionic redox reactions (O 2− /O − ), an alternative to conventional cationic redox reactions (M n+ /M (n+1)+ ; M: transition metal), have recently been identified as essential to achieve high energy density cathodes for sodium-ion batteries (SIBs). To overcome the drawbacks of anionic redox reactions leading to phase change and separation in the newly discovered Na(Li 1/3 Mn 2/3 )O 2 material (NLMO, ∼4.2 V vs. Na/Na + with a high charge capacity of 190 mAh g −1 ), we have rationally designed high energy density Na(Li 1/3 Mn 1/2 Cr 1/6 )O 2 (NLMCO) in which the Cr 3d-electron is coupled with the labile O 2p-electron coordinated with Mn 4+ for charge compensation during desodiation processes. NLMCO exhibits reduced phase change and separation, and chemomechanical strain and stress compared to NLMO and is thus expected to show high electrochemical performance, where the formation of short O–O bonds is not observed. By correlating the thermodynamic energy behavior with the redox mechanism in NLMO, it is concluded that our systematically designed cation–anion-coupled NLMCO is an excellent cathode material, introducing advanced materials of formula Na(Li 1/3 M 2/3(1−y) M cy )O 2 (M and M c : transition metals with stabilized M 4+ species and cationic redox active M c 4+ species) for next-generation SIBs.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkU1OwzAQhSMEElXphhPMElBDnZ-mzrKq-JMKlVBZRxN70hglcWW70O64A5djzUlwAYEX_saeN-8tJghOI3YZsSQfzfhyyuI0GU8Pgl7MxiycpHl2-FdzfhwMrH1m_nDGsjzvBR-P6JTusAFJVq060BU84NlcQTRK4L7ziGFmPDI4X0AMtK1VqZzqViC-Rz_f3rHzDIXerBuSYEjqrb9R7NsWXpWrwW7WZJQ2QA0JZ7SoqVUCmyG4mkyr5a5D_zEEdPqHnYS9SLckah_gtbA22rs4RRYqb4XyBTvhE62WatOGPg1KdM4HkT0JjipsLA1-2Q-erq-Ws9twvri5m03noYiyyIVZFiEruRBiwpNxhjmfEMcyJZ4ygVkZCylS3yYu_YPSJCFMx7wiTnwiKU_6wcWPrzDaWkNVsTaqRbMrIlbs11L8ryX5Ahe8hIU</recordid><startdate>20181007</startdate><enddate>20181007</enddate><creator>Kim, Duho</creator><creator>Cho, Maenghyo</creator><creator>Cho, Kyeongjae</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7640-9457</orcidid><orcidid>https://orcid.org/0000-0003-2698-7774</orcidid></search><sort><creationdate>20181007</creationdate><title>Rational design of Na(Li 1/3 Mn 1/2 Cr 1/6 )O 2 exhibiting cation–anion-coupled redox reactions with superior electrochemical, thermodynamic, atomic, and chemomechanical properties for advanced sodium-ion batteries</title><author>Kim, Duho ; Cho, Maenghyo ; Cho, Kyeongjae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161t-661a0b8ccc78356a987e8ab4e840ca6b2cdc48cce8d6b2e433ea458fe8e87de93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Duho</creatorcontrib><creatorcontrib>Cho, Maenghyo</creatorcontrib><creatorcontrib>Cho, Kyeongjae</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Duho</au><au>Cho, Maenghyo</au><au>Cho, Kyeongjae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of Na(Li 1/3 Mn 1/2 Cr 1/6 )O 2 exhibiting cation–anion-coupled redox reactions with superior electrochemical, thermodynamic, atomic, and chemomechanical properties for advanced sodium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018-10-07</date><risdate>2018</risdate><volume>6</volume><issue>37</issue><spage>18036</spage><epage>18043</epage><pages>18036-18043</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Anionic redox reactions (O 2− /O − ), an alternative to conventional cationic redox reactions (M n+ /M (n+1)+ ; M: transition metal), have recently been identified as essential to achieve high energy density cathodes for sodium-ion batteries (SIBs). To overcome the drawbacks of anionic redox reactions leading to phase change and separation in the newly discovered Na(Li 1/3 Mn 2/3 )O 2 material (NLMO, ∼4.2 V vs. Na/Na + with a high charge capacity of 190 mAh g −1 ), we have rationally designed high energy density Na(Li 1/3 Mn 1/2 Cr 1/6 )O 2 (NLMCO) in which the Cr 3d-electron is coupled with the labile O 2p-electron coordinated with Mn 4+ for charge compensation during desodiation processes. NLMCO exhibits reduced phase change and separation, and chemomechanical strain and stress compared to NLMO and is thus expected to show high electrochemical performance, where the formation of short O–O bonds is not observed. By correlating the thermodynamic energy behavior with the redox mechanism in NLMO, it is concluded that our systematically designed cation–anion-coupled NLMCO is an excellent cathode material, introducing advanced materials of formula Na(Li 1/3 M 2/3(1−y) M cy )O 2 (M and M c : transition metals with stabilized M 4+ species and cationic redox active M c 4+ species) for next-generation SIBs.</abstract><doi>10.1039/C8TA02435A</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7640-9457</orcidid><orcidid>https://orcid.org/0000-0003-2698-7774</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018-10, Vol.6 (37), p.18036-18043
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_C8TA02435A
source Royal Society Of Chemistry Journals 2008-
title Rational design of Na(Li 1/3 Mn 1/2 Cr 1/6 )O 2 exhibiting cation–anion-coupled redox reactions with superior electrochemical, thermodynamic, atomic, and chemomechanical properties for advanced sodium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20Na(Li%201/3%20Mn%201/2%20Cr%201/6%20)O%202%20exhibiting%20cation%E2%80%93anion-coupled%20redox%20reactions%20with%20superior%20electrochemical,%20thermodynamic,%20atomic,%20and%20chemomechanical%20properties%20for%20advanced%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kim,%20Duho&rft.date=2018-10-07&rft.volume=6&rft.issue=37&rft.spage=18036&rft.epage=18043&rft.pages=18036-18043&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA02435A&rft_dat=%3Ccrossref%3E10_1039_C8TA02435A%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true