Dual hydrophobic grafted chains facilitating quaternary ammonium aggregations of hydroxide conducting polymers: a theoretical and experimental investigation

Establishment of connective hydroxide conducting channels is highly desired for alkaline anion exchange membranes (AAEMs). Herein, we offer a feasible strategy of grafting long alkyl chains onto both the quaternary ammonium cation (QA) center and backbone to achieve the formation of well-developed p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018-01, Vol.6 (14), p.5714-5723
Hauptverfasser: Ran, Jin, Fu, Cenfeng, Ding, Liang, Cao, Pengrui, Xu, Tongwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Establishment of connective hydroxide conducting channels is highly desired for alkaline anion exchange membranes (AAEMs). Herein, we offer a feasible strategy of grafting long alkyl chains onto both the quaternary ammonium cation (QA) center and backbone to achieve the formation of well-developed pathways for OH − transport. Theoretical simulations reveal that QA groups are prone to aggregation driven by the thermodynamic incompatibility between the backbone and grafted chains. With increasing length of alkyl chains, micro-phase separation is facilitated. Experimentally, the C16C6-X40Y10 AAEM having the largest population of the longest alkyl chains in this work gives rise to the highest hydroxide conductivity of 61 mS cm −1 at 30 °C, although its water uptake is only 15.8%. The alkaline anion exchange membrane fuel cell with the incorporation of C16C6-X40Y10 yields a maximum power density of 322 mW cm −2 at 60 °C. These results represent the advancements of this dual grafted structure in improving hydroxide conductivities, and this configuration can act as a general platform for developing promising AAEMs in the future. Dual grafted chains promote the effective aggregations of quaternary ammonium groups on the backbone.
ISSN:2050-7488
2050-7496
DOI:10.1039/c8ta00500a