Modeling the free-radical polymerization of hexanediol diacrylate (HDDA): a molecular dynamics and graph theory approach

In the printing, coating and ink industries, photocurable systems are becoming increasingly popular and multi-functional acrylates are one of the most commonly used monomers due to their high reactivity (fast curing). In this paper, we use molecular dynamics and graph theory tools to investigate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2018, Vol.14 (17), p.344-3414
Hauptverfasser: Torres-Knoop, Ariana, Kryven, Ivan, Schamboeck, Verena, Iedema, Piet D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3414
container_issue 17
container_start_page 344
container_title Soft matter
container_volume 14
creator Torres-Knoop, Ariana
Kryven, Ivan
Schamboeck, Verena
Iedema, Piet D
description In the printing, coating and ink industries, photocurable systems are becoming increasingly popular and multi-functional acrylates are one of the most commonly used monomers due to their high reactivity (fast curing). In this paper, we use molecular dynamics and graph theory tools to investigate the thermo-mechanical properties and topology of hexanediol diacrylate (HDDA) polymer networks. The gel point was determined as the point where a giant component was formed. For the conditions of our simulations, we found the gel point to be around 0.18 bond conversion. A detailed analysis of the network topology showed, unexpectedly, that the flexibility of the HDDA molecules plays an important role in increasing the conversion of double bonds, while delaying the gel point. This is due to a back-biting type of reaction mechanism that promotes the formation of small cycles. The glass transition temperature for several degrees of curing was obtained from the change in the thermal expansion coefficient. For a bond conversion close to experimental values we obtained a glass transition temperature around 400 K. For the same bond conversion we estimate a Young's modulus of 3 GPa. Both of these values are in good agreement with experiments. The combination of molecular dynamics simulations and graph theory tools provides important insight into polymerization processes.
doi_str_mv 10.1039/c8sm00451j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8SM00451J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2033320139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-e71afd439c402f6c2d6a4d44a575d2a99baef85b5d7c76da215decce8d10d7243</originalsourceid><addsrcrecordid>eNpdkUtP3DAURq2KqtBpN92DLHUDlQJ-xUm6QwMtRaAu2krdRXfsG8YjJw52IpH--gaGDlJXvpKPvvs4hHzg7JQzWZ2ZMrWMqZxvXpEDXiiV6VKVe7ta_t4nb1PaMCZLxfUbsi8qrQtdigPycBssetfd0WGNtImIWQTrDHjaBz-1GN0fGFzoaGjoGh-gQ-uCp9aBiZOHAenx1cXF-clnCrQNHs3oIVI7ddA6kyh0lt5F6NeP-SFOFPo-BjDrd-R1Az7h--d3QX59ufy5vMpuvn_9tjy_yYyqxJBhwaGxSlZGMdFoI6wGZZWCvMitgKpaATZlvsptYQptQfDcojFYWs5sIZRckONt7tz2fsQ01K1LBr2fNwljqgUTBdM6n8-0IB__QzdhjN083UxJKQXjspqpT1vKxJBSxKbuo2shTjVn9aOPeln-uH3ycT3DR8-R46pFu0P_CZiBwy0Qk9n9vgiVfwFOr5DJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033320139</pqid></control><display><type>article</type><title>Modeling the free-radical polymerization of hexanediol diacrylate (HDDA): a molecular dynamics and graph theory approach</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Torres-Knoop, Ariana ; Kryven, Ivan ; Schamboeck, Verena ; Iedema, Piet D</creator><creatorcontrib>Torres-Knoop, Ariana ; Kryven, Ivan ; Schamboeck, Verena ; Iedema, Piet D</creatorcontrib><description>In the printing, coating and ink industries, photocurable systems are becoming increasingly popular and multi-functional acrylates are one of the most commonly used monomers due to their high reactivity (fast curing). In this paper, we use molecular dynamics and graph theory tools to investigate the thermo-mechanical properties and topology of hexanediol diacrylate (HDDA) polymer networks. The gel point was determined as the point where a giant component was formed. For the conditions of our simulations, we found the gel point to be around 0.18 bond conversion. A detailed analysis of the network topology showed, unexpectedly, that the flexibility of the HDDA molecules plays an important role in increasing the conversion of double bonds, while delaying the gel point. This is due to a back-biting type of reaction mechanism that promotes the formation of small cycles. The glass transition temperature for several degrees of curing was obtained from the change in the thermal expansion coefficient. For a bond conversion close to experimental values we obtained a glass transition temperature around 400 K. For the same bond conversion we estimate a Young's modulus of 3 GPa. Both of these values are in good agreement with experiments. The combination of molecular dynamics simulations and graph theory tools provides important insight into polymerization processes.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c8sm00451j</identifier><identifier>PMID: 29667682</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acrylates ; Biting ; Computer simulation ; Conversion ; Curing ; Gelation ; Glass transition temperature ; Graph theory ; Mechanical properties ; Modulus of elasticity ; Molecular chains ; Molecular dynamics ; Monomers ; Network topologies ; Polymerization ; Reaction mechanisms ; Temperature ; Thermal expansion ; Thermomechanical properties ; Topology ; Transition temperatures</subject><ispartof>Soft matter, 2018, Vol.14 (17), p.344-3414</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-e71afd439c402f6c2d6a4d44a575d2a99baef85b5d7c76da215decce8d10d7243</citedby><cites>FETCH-LOGICAL-c492t-e71afd439c402f6c2d6a4d44a575d2a99baef85b5d7c76da215decce8d10d7243</cites><orcidid>0000-0001-8976-2965 ; 0000-0001-8357-2204 ; 0000-0002-3964-2196 ; 0000-0003-1591-051X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29667682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torres-Knoop, Ariana</creatorcontrib><creatorcontrib>Kryven, Ivan</creatorcontrib><creatorcontrib>Schamboeck, Verena</creatorcontrib><creatorcontrib>Iedema, Piet D</creatorcontrib><title>Modeling the free-radical polymerization of hexanediol diacrylate (HDDA): a molecular dynamics and graph theory approach</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>In the printing, coating and ink industries, photocurable systems are becoming increasingly popular and multi-functional acrylates are one of the most commonly used monomers due to their high reactivity (fast curing). In this paper, we use molecular dynamics and graph theory tools to investigate the thermo-mechanical properties and topology of hexanediol diacrylate (HDDA) polymer networks. The gel point was determined as the point where a giant component was formed. For the conditions of our simulations, we found the gel point to be around 0.18 bond conversion. A detailed analysis of the network topology showed, unexpectedly, that the flexibility of the HDDA molecules plays an important role in increasing the conversion of double bonds, while delaying the gel point. This is due to a back-biting type of reaction mechanism that promotes the formation of small cycles. The glass transition temperature for several degrees of curing was obtained from the change in the thermal expansion coefficient. For a bond conversion close to experimental values we obtained a glass transition temperature around 400 K. For the same bond conversion we estimate a Young's modulus of 3 GPa. Both of these values are in good agreement with experiments. The combination of molecular dynamics simulations and graph theory tools provides important insight into polymerization processes.</description><subject>Acrylates</subject><subject>Biting</subject><subject>Computer simulation</subject><subject>Conversion</subject><subject>Curing</subject><subject>Gelation</subject><subject>Glass transition temperature</subject><subject>Graph theory</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Monomers</subject><subject>Network topologies</subject><subject>Polymerization</subject><subject>Reaction mechanisms</subject><subject>Temperature</subject><subject>Thermal expansion</subject><subject>Thermomechanical properties</subject><subject>Topology</subject><subject>Transition temperatures</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUtP3DAURq2KqtBpN92DLHUDlQJ-xUm6QwMtRaAu2krdRXfsG8YjJw52IpH--gaGDlJXvpKPvvs4hHzg7JQzWZ2ZMrWMqZxvXpEDXiiV6VKVe7ta_t4nb1PaMCZLxfUbsi8qrQtdigPycBssetfd0WGNtImIWQTrDHjaBz-1GN0fGFzoaGjoGh-gQ-uCp9aBiZOHAenx1cXF-clnCrQNHs3oIVI7ddA6kyh0lt5F6NeP-SFOFPo-BjDrd-R1Az7h--d3QX59ufy5vMpuvn_9tjy_yYyqxJBhwaGxSlZGMdFoI6wGZZWCvMitgKpaATZlvsptYQptQfDcojFYWs5sIZRckONt7tz2fsQ01K1LBr2fNwljqgUTBdM6n8-0IB__QzdhjN083UxJKQXjspqpT1vKxJBSxKbuo2shTjVn9aOPeln-uH3ycT3DR8-R46pFu0P_CZiBwy0Qk9n9vgiVfwFOr5DJ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Torres-Knoop, Ariana</creator><creator>Kryven, Ivan</creator><creator>Schamboeck, Verena</creator><creator>Iedema, Piet D</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8976-2965</orcidid><orcidid>https://orcid.org/0000-0001-8357-2204</orcidid><orcidid>https://orcid.org/0000-0002-3964-2196</orcidid><orcidid>https://orcid.org/0000-0003-1591-051X</orcidid></search><sort><creationdate>2018</creationdate><title>Modeling the free-radical polymerization of hexanediol diacrylate (HDDA): a molecular dynamics and graph theory approach</title><author>Torres-Knoop, Ariana ; Kryven, Ivan ; Schamboeck, Verena ; Iedema, Piet D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-e71afd439c402f6c2d6a4d44a575d2a99baef85b5d7c76da215decce8d10d7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acrylates</topic><topic>Biting</topic><topic>Computer simulation</topic><topic>Conversion</topic><topic>Curing</topic><topic>Gelation</topic><topic>Glass transition temperature</topic><topic>Graph theory</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Monomers</topic><topic>Network topologies</topic><topic>Polymerization</topic><topic>Reaction mechanisms</topic><topic>Temperature</topic><topic>Thermal expansion</topic><topic>Thermomechanical properties</topic><topic>Topology</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres-Knoop, Ariana</creatorcontrib><creatorcontrib>Kryven, Ivan</creatorcontrib><creatorcontrib>Schamboeck, Verena</creatorcontrib><creatorcontrib>Iedema, Piet D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres-Knoop, Ariana</au><au>Kryven, Ivan</au><au>Schamboeck, Verena</au><au>Iedema, Piet D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the free-radical polymerization of hexanediol diacrylate (HDDA): a molecular dynamics and graph theory approach</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2018</date><risdate>2018</risdate><volume>14</volume><issue>17</issue><spage>344</spage><epage>3414</epage><pages>344-3414</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>In the printing, coating and ink industries, photocurable systems are becoming increasingly popular and multi-functional acrylates are one of the most commonly used monomers due to their high reactivity (fast curing). In this paper, we use molecular dynamics and graph theory tools to investigate the thermo-mechanical properties and topology of hexanediol diacrylate (HDDA) polymer networks. The gel point was determined as the point where a giant component was formed. For the conditions of our simulations, we found the gel point to be around 0.18 bond conversion. A detailed analysis of the network topology showed, unexpectedly, that the flexibility of the HDDA molecules plays an important role in increasing the conversion of double bonds, while delaying the gel point. This is due to a back-biting type of reaction mechanism that promotes the formation of small cycles. The glass transition temperature for several degrees of curing was obtained from the change in the thermal expansion coefficient. For a bond conversion close to experimental values we obtained a glass transition temperature around 400 K. For the same bond conversion we estimate a Young's modulus of 3 GPa. Both of these values are in good agreement with experiments. The combination of molecular dynamics simulations and graph theory tools provides important insight into polymerization processes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29667682</pmid><doi>10.1039/c8sm00451j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8976-2965</orcidid><orcidid>https://orcid.org/0000-0001-8357-2204</orcidid><orcidid>https://orcid.org/0000-0002-3964-2196</orcidid><orcidid>https://orcid.org/0000-0003-1591-051X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2018, Vol.14 (17), p.344-3414
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_C8SM00451J
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Acrylates
Biting
Computer simulation
Conversion
Curing
Gelation
Glass transition temperature
Graph theory
Mechanical properties
Modulus of elasticity
Molecular chains
Molecular dynamics
Monomers
Network topologies
Polymerization
Reaction mechanisms
Temperature
Thermal expansion
Thermomechanical properties
Topology
Transition temperatures
title Modeling the free-radical polymerization of hexanediol diacrylate (HDDA): a molecular dynamics and graph theory approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20free-radical%20polymerization%20of%20hexanediol%20diacrylate%20(HDDA):%20a%20molecular%20dynamics%20and%20graph%20theory%20approach&rft.jtitle=Soft%20matter&rft.au=Torres-Knoop,%20Ariana&rft.date=2018&rft.volume=14&rft.issue=17&rft.spage=344&rft.epage=3414&rft.pages=344-3414&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c8sm00451j&rft_dat=%3Cproquest_cross%3E2033320139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2033320139&rft_id=info:pmid/29667682&rfr_iscdi=true