Phosphorus doped SnO 2 thin films for transparent conducting oxide applications: synthesis, optoelectronic properties and computational models

Phosphorus doped tin(iv) oxide (P:SnO ) films have been synthesised by an aerosol assisted chemical vapour deposition route. Triethyl phosphate was used as the phosphorus dopant source. The phosphorus concentration in solution was found to be key to electrical properties, with concentrations between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2018-11, Vol.9 (41), p.7968-7980
Hauptverfasser: Powell, Michael J, Williamson, Benjamin A D, Baek, Song-Yi, Manzi, Joe, Potter, Dominic B, Scanlon, David O, Carmalt, Claire J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7980
container_issue 41
container_start_page 7968
container_title Chemical science (Cambridge)
container_volume 9
creator Powell, Michael J
Williamson, Benjamin A D
Baek, Song-Yi
Manzi, Joe
Potter, Dominic B
Scanlon, David O
Carmalt, Claire J
description Phosphorus doped tin(iv) oxide (P:SnO ) films have been synthesised by an aerosol assisted chemical vapour deposition route. Triethyl phosphate was used as the phosphorus dopant source. The phosphorus concentration in solution was found to be key to electrical properties, with concentrations between 0.25-0.5 mol% phosphorus giving the lowest resistivities of the deposited films. The conductivity of the films synthesised improved on doping SnO with phosphorus, with resistivity values of 7.27 × 10 Ω cm and sheet resistance values of 18.2 Ω □ achieved for the most conductive films. Phosphorus doping up to 1.0 mol% was shown to improve visible light transmission of the deposited films. The phosphorus doping also had a significant effect on film morphology, with varying microstructures achieved. The films were characterised by X-ray diffraction, scanning electron microscopy, UV/vis spectroscopy, Hall effect measurements and X-ray photoelectron spectroscopy. The data generated was used to build computational models of phosphorus as a dopant for SnO , showing that the phosphorus acts as a shallow one-electron n-type donor allowing for good conductivities. Phosphorus does not suffer from self-compensation issues associated with other dopants, such as fluorine.
doi_str_mv 10.1039/c8sc02152j
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8SC02152J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30542551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c991-16c17a006a09be6f3679cd61c2f86dd4f08f0754dcdb2d3d0a7e25bcd78820e53</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMotmg3PoBkLY7mMld3MnilUKHdD5lcnJSZJCQZsC_hMzu22rM5Z_H9_4EPgCuM7jCi1T0vA0cEZ2R7AuYEpTjJM1qdHm-CZmARwhZNQ-nEFedgRlGWkizDc_D90dngOuvHAIV1UsC1WUECY6cNVLofAlTWw-iZCY55aSLk1oiRR20-of3SQkLmXK85i9qa8ADDzsROBh1uoXXRyl7y6K3RHDo_PfBRywCZEVPP4Ma4j7EeDlbIPlyCM8X6IBd_-wJsnp829WuyXL281Y_LhFcVTnDOccEQyhmqWpkrmhcVFznmRJW5EKlCpUJFlgouWiKoQKyQJGu5KMqSIJnRC3BzqOXehuClapzXA_O7BqPmV2tTl-t6r_V9gq8PsBvbQYoj-i-R_gAp6Xbd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phosphorus doped SnO 2 thin films for transparent conducting oxide applications: synthesis, optoelectronic properties and computational models</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Powell, Michael J ; Williamson, Benjamin A D ; Baek, Song-Yi ; Manzi, Joe ; Potter, Dominic B ; Scanlon, David O ; Carmalt, Claire J</creator><creatorcontrib>Powell, Michael J ; Williamson, Benjamin A D ; Baek, Song-Yi ; Manzi, Joe ; Potter, Dominic B ; Scanlon, David O ; Carmalt, Claire J</creatorcontrib><description>Phosphorus doped tin(iv) oxide (P:SnO ) films have been synthesised by an aerosol assisted chemical vapour deposition route. Triethyl phosphate was used as the phosphorus dopant source. The phosphorus concentration in solution was found to be key to electrical properties, with concentrations between 0.25-0.5 mol% phosphorus giving the lowest resistivities of the deposited films. The conductivity of the films synthesised improved on doping SnO with phosphorus, with resistivity values of 7.27 × 10 Ω cm and sheet resistance values of 18.2 Ω □ achieved for the most conductive films. Phosphorus doping up to 1.0 mol% was shown to improve visible light transmission of the deposited films. The phosphorus doping also had a significant effect on film morphology, with varying microstructures achieved. The films were characterised by X-ray diffraction, scanning electron microscopy, UV/vis spectroscopy, Hall effect measurements and X-ray photoelectron spectroscopy. The data generated was used to build computational models of phosphorus as a dopant for SnO , showing that the phosphorus acts as a shallow one-electron n-type donor allowing for good conductivities. Phosphorus does not suffer from self-compensation issues associated with other dopants, such as fluorine.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c8sc02152j</identifier><identifier>PMID: 30542551</identifier><language>eng</language><publisher>England</publisher><ispartof>Chemical science (Cambridge), 2018-11, Vol.9 (41), p.7968-7980</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c991-16c17a006a09be6f3679cd61c2f86dd4f08f0754dcdb2d3d0a7e25bcd78820e53</citedby><cites>FETCH-LOGICAL-c991-16c17a006a09be6f3679cd61c2f86dd4f08f0754dcdb2d3d0a7e25bcd78820e53</cites><orcidid>0000-0003-2453-9134 ; 0000-0001-7064-1370 ; 0000-0002-6242-1121 ; 0000-0001-9174-8601 ; 0000-0003-1788-6971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30542551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Powell, Michael J</creatorcontrib><creatorcontrib>Williamson, Benjamin A D</creatorcontrib><creatorcontrib>Baek, Song-Yi</creatorcontrib><creatorcontrib>Manzi, Joe</creatorcontrib><creatorcontrib>Potter, Dominic B</creatorcontrib><creatorcontrib>Scanlon, David O</creatorcontrib><creatorcontrib>Carmalt, Claire J</creatorcontrib><title>Phosphorus doped SnO 2 thin films for transparent conducting oxide applications: synthesis, optoelectronic properties and computational models</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Phosphorus doped tin(iv) oxide (P:SnO ) films have been synthesised by an aerosol assisted chemical vapour deposition route. Triethyl phosphate was used as the phosphorus dopant source. The phosphorus concentration in solution was found to be key to electrical properties, with concentrations between 0.25-0.5 mol% phosphorus giving the lowest resistivities of the deposited films. The conductivity of the films synthesised improved on doping SnO with phosphorus, with resistivity values of 7.27 × 10 Ω cm and sheet resistance values of 18.2 Ω □ achieved for the most conductive films. Phosphorus doping up to 1.0 mol% was shown to improve visible light transmission of the deposited films. The phosphorus doping also had a significant effect on film morphology, with varying microstructures achieved. The films were characterised by X-ray diffraction, scanning electron microscopy, UV/vis spectroscopy, Hall effect measurements and X-ray photoelectron spectroscopy. The data generated was used to build computational models of phosphorus as a dopant for SnO , showing that the phosphorus acts as a shallow one-electron n-type donor allowing for good conductivities. Phosphorus does not suffer from self-compensation issues associated with other dopants, such as fluorine.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMotmg3PoBkLY7mMld3MnilUKHdD5lcnJSZJCQZsC_hMzu22rM5Z_H9_4EPgCuM7jCi1T0vA0cEZ2R7AuYEpTjJM1qdHm-CZmARwhZNQ-nEFedgRlGWkizDc_D90dngOuvHAIV1UsC1WUECY6cNVLofAlTWw-iZCY55aSLk1oiRR20-of3SQkLmXK85i9qa8ADDzsROBh1uoXXRyl7y6K3RHDo_PfBRywCZEVPP4Ma4j7EeDlbIPlyCM8X6IBd_-wJsnp829WuyXL281Y_LhFcVTnDOccEQyhmqWpkrmhcVFznmRJW5EKlCpUJFlgouWiKoQKyQJGu5KMqSIJnRC3BzqOXehuClapzXA_O7BqPmV2tTl-t6r_V9gq8PsBvbQYoj-i-R_gAp6Xbd</recordid><startdate>20181107</startdate><enddate>20181107</enddate><creator>Powell, Michael J</creator><creator>Williamson, Benjamin A D</creator><creator>Baek, Song-Yi</creator><creator>Manzi, Joe</creator><creator>Potter, Dominic B</creator><creator>Scanlon, David O</creator><creator>Carmalt, Claire J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2453-9134</orcidid><orcidid>https://orcid.org/0000-0001-7064-1370</orcidid><orcidid>https://orcid.org/0000-0002-6242-1121</orcidid><orcidid>https://orcid.org/0000-0001-9174-8601</orcidid><orcidid>https://orcid.org/0000-0003-1788-6971</orcidid></search><sort><creationdate>20181107</creationdate><title>Phosphorus doped SnO 2 thin films for transparent conducting oxide applications: synthesis, optoelectronic properties and computational models</title><author>Powell, Michael J ; Williamson, Benjamin A D ; Baek, Song-Yi ; Manzi, Joe ; Potter, Dominic B ; Scanlon, David O ; Carmalt, Claire J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c991-16c17a006a09be6f3679cd61c2f86dd4f08f0754dcdb2d3d0a7e25bcd78820e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Powell, Michael J</creatorcontrib><creatorcontrib>Williamson, Benjamin A D</creatorcontrib><creatorcontrib>Baek, Song-Yi</creatorcontrib><creatorcontrib>Manzi, Joe</creatorcontrib><creatorcontrib>Potter, Dominic B</creatorcontrib><creatorcontrib>Scanlon, David O</creatorcontrib><creatorcontrib>Carmalt, Claire J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Powell, Michael J</au><au>Williamson, Benjamin A D</au><au>Baek, Song-Yi</au><au>Manzi, Joe</au><au>Potter, Dominic B</au><au>Scanlon, David O</au><au>Carmalt, Claire J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorus doped SnO 2 thin films for transparent conducting oxide applications: synthesis, optoelectronic properties and computational models</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2018-11-07</date><risdate>2018</risdate><volume>9</volume><issue>41</issue><spage>7968</spage><epage>7980</epage><pages>7968-7980</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Phosphorus doped tin(iv) oxide (P:SnO ) films have been synthesised by an aerosol assisted chemical vapour deposition route. Triethyl phosphate was used as the phosphorus dopant source. The phosphorus concentration in solution was found to be key to electrical properties, with concentrations between 0.25-0.5 mol% phosphorus giving the lowest resistivities of the deposited films. The conductivity of the films synthesised improved on doping SnO with phosphorus, with resistivity values of 7.27 × 10 Ω cm and sheet resistance values of 18.2 Ω □ achieved for the most conductive films. Phosphorus doping up to 1.0 mol% was shown to improve visible light transmission of the deposited films. The phosphorus doping also had a significant effect on film morphology, with varying microstructures achieved. The films were characterised by X-ray diffraction, scanning electron microscopy, UV/vis spectroscopy, Hall effect measurements and X-ray photoelectron spectroscopy. The data generated was used to build computational models of phosphorus as a dopant for SnO , showing that the phosphorus acts as a shallow one-electron n-type donor allowing for good conductivities. Phosphorus does not suffer from self-compensation issues associated with other dopants, such as fluorine.</abstract><cop>England</cop><pmid>30542551</pmid><doi>10.1039/c8sc02152j</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2453-9134</orcidid><orcidid>https://orcid.org/0000-0001-7064-1370</orcidid><orcidid>https://orcid.org/0000-0002-6242-1121</orcidid><orcidid>https://orcid.org/0000-0001-9174-8601</orcidid><orcidid>https://orcid.org/0000-0003-1788-6971</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2018-11, Vol.9 (41), p.7968-7980
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_C8SC02152J
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
title Phosphorus doped SnO 2 thin films for transparent conducting oxide applications: synthesis, optoelectronic properties and computational models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorus%20doped%20SnO%202%20thin%20films%20for%20transparent%20conducting%20oxide%20applications:%20synthesis,%20optoelectronic%20properties%20and%20computational%20models&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Powell,%20Michael%20J&rft.date=2018-11-07&rft.volume=9&rft.issue=41&rft.spage=7968&rft.epage=7980&rft.pages=7968-7980&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c8sc02152j&rft_dat=%3Cpubmed_cross%3E30542551%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30542551&rfr_iscdi=true