From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation
Bioinstructive scaffolds for regenerative medicine are characterized by intrinsic properties capable of directing cell response and promoting wound healing. The design of such scaffolds requires the incorporation of well-defined physical properties that mimic the native extracellular matrix (ECM). H...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-08, Vol.11 (3), p.14312-14321 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14321 |
---|---|
container_issue | 3 |
container_start_page | 14312 |
container_title | Nanoscale |
container_volume | 11 |
creator | Chen, Honglin Baptista, Danielle F Criscenti, Giuseppe Crispim, João Fernandes, Hugo van Blitterswijk, Clemens Truckenmüller, Roman Moroni, Lorenzo |
description | Bioinstructive scaffolds for regenerative medicine are characterized by intrinsic properties capable of directing cell response and promoting wound healing. The design of such scaffolds requires the incorporation of well-defined physical properties that mimic the native extracellular matrix (ECM). Here, inspired by epithelial tissue morphogenesis, we present a novel approach to code nanofiber materials with controlled hierarchical wavy structures resembling the configurations of native EMC fibers through using thermally shrinking materials as substrates onto which the fibers are deposited. This approach could serve as a platform for fabricating functional scaffolds mimicking various tissues such as trachea, iris, artery wall and ciliary body. Modeling affirms that the mechanical properties of the fabricated wavy fibers could be regulated through varying their wavy patterns. The nanofibrous scaffolds coded with wavy patterns show an enhanced cellular infiltration. In addition, we further investigated whether the wavy patterns could regulate transforming growth factor-beta (TGF-β) production, a key signalling pathway involved in connective tissue development. Our results demonstrated that nanofibrous scaffolds coded with wavy patterns could induce TGF-β expression without the addition of a soluble growth factor. Our new approach could open up new avenues for fabricating bioinstructive scaffolds for regenerative medicine.
Bioinstructive scaffolds for regenerative medicine are characterized by their intrinsic properties that are capable of directing cell response and promoting wound healing. |
doi_str_mv | 10.1039/c8nr10108f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8NR10108F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267434182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-c88b21f978d0f48a1ca5aa13e43d29ca2d82dde02ed3d5ad223ee550efb32f9a3</originalsourceid><addsrcrecordid>eNpVkU2LFDEQhoMo7rp68a4EvAmj-eqetIcFGRwVFgXRc6hOKttZuztjkl7Zn-C_NjuzjnpKUe_Dk4KXkKecveJMdq-tnhNnnGl_j5wKpthKyrW4f5xbdUIe5XzFWNvJVj4kJ5JLIbiSp-TXNsWJ-tBjonZJY6Yl0gnzQH_CNeY3FOhuhOJjqlRMtAxIPfQpWCghzjR6OgRMkOxQV-N4Q3NJiy1LQkdnmONenekUpmC_h_myLmsIIy0h5wVvpdNe9Zg88DBmfHL3npFv23dfNx9WF5_ff9y8vVhZ1TZlZbXuBffdWjvmlQZuoQHgEpV0orMgnBbOIRPopGvACSERm4ah76XwHcgzcn7w7pZ-QmdxLvUcs0thgnRjIgTzfzKHwVzGa6NbvlZtWwUv7gQp_lgwF3MVlzTXm40Q7VpJxbWo1MsDZVPMOaE__sCZua3NbPSnL_vathV-_u9NR_RPTxV4dgBStsf0b-_yN0mModw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267434182</pqid></control><display><type>article</type><title>From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Honglin ; Baptista, Danielle F ; Criscenti, Giuseppe ; Crispim, João ; Fernandes, Hugo ; van Blitterswijk, Clemens ; Truckenmüller, Roman ; Moroni, Lorenzo</creator><creatorcontrib>Chen, Honglin ; Baptista, Danielle F ; Criscenti, Giuseppe ; Crispim, João ; Fernandes, Hugo ; van Blitterswijk, Clemens ; Truckenmüller, Roman ; Moroni, Lorenzo</creatorcontrib><description>Bioinstructive scaffolds for regenerative medicine are characterized by intrinsic properties capable of directing cell response and promoting wound healing. The design of such scaffolds requires the incorporation of well-defined physical properties that mimic the native extracellular matrix (ECM). Here, inspired by epithelial tissue morphogenesis, we present a novel approach to code nanofiber materials with controlled hierarchical wavy structures resembling the configurations of native EMC fibers through using thermally shrinking materials as substrates onto which the fibers are deposited. This approach could serve as a platform for fabricating functional scaffolds mimicking various tissues such as trachea, iris, artery wall and ciliary body. Modeling affirms that the mechanical properties of the fabricated wavy fibers could be regulated through varying their wavy patterns. The nanofibrous scaffolds coded with wavy patterns show an enhanced cellular infiltration. In addition, we further investigated whether the wavy patterns could regulate transforming growth factor-beta (TGF-β) production, a key signalling pathway involved in connective tissue development. Our results demonstrated that nanofibrous scaffolds coded with wavy patterns could induce TGF-β expression without the addition of a soluble growth factor. Our new approach could open up new avenues for fabricating bioinstructive scaffolds for regenerative medicine.
Bioinstructive scaffolds for regenerative medicine are characterized by their intrinsic properties that are capable of directing cell response and promoting wound healing.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr10108f</identifier><identifier>PMID: 31322143</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biocompatible Materials - chemistry ; Cells, Cultured ; Chemistry ; Connective tissues ; Extracellular Matrix - chemistry ; Extracellular Matrix - metabolism ; Finite element method ; Growth factors ; Humans ; Mechanical properties ; Medicine ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Nanofibers ; Nanofibers - chemistry ; Physical properties ; Scaffolds ; Signal Transduction ; Structural hierarchy ; Substrates ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Trachea ; Transforming Growth Factor beta - metabolism ; Wound healing</subject><ispartof>Nanoscale, 2019-08, Vol.11 (3), p.14312-14321</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-c88b21f978d0f48a1ca5aa13e43d29ca2d82dde02ed3d5ad223ee550efb32f9a3</citedby><cites>FETCH-LOGICAL-c465t-c88b21f978d0f48a1ca5aa13e43d29ca2d82dde02ed3d5ad223ee550efb32f9a3</cites><orcidid>0000-0003-1298-6025 ; 0000-0002-4574-7648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31322143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Honglin</creatorcontrib><creatorcontrib>Baptista, Danielle F</creatorcontrib><creatorcontrib>Criscenti, Giuseppe</creatorcontrib><creatorcontrib>Crispim, João</creatorcontrib><creatorcontrib>Fernandes, Hugo</creatorcontrib><creatorcontrib>van Blitterswijk, Clemens</creatorcontrib><creatorcontrib>Truckenmüller, Roman</creatorcontrib><creatorcontrib>Moroni, Lorenzo</creatorcontrib><title>From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Bioinstructive scaffolds for regenerative medicine are characterized by intrinsic properties capable of directing cell response and promoting wound healing. The design of such scaffolds requires the incorporation of well-defined physical properties that mimic the native extracellular matrix (ECM). Here, inspired by epithelial tissue morphogenesis, we present a novel approach to code nanofiber materials with controlled hierarchical wavy structures resembling the configurations of native EMC fibers through using thermally shrinking materials as substrates onto which the fibers are deposited. This approach could serve as a platform for fabricating functional scaffolds mimicking various tissues such as trachea, iris, artery wall and ciliary body. Modeling affirms that the mechanical properties of the fabricated wavy fibers could be regulated through varying their wavy patterns. The nanofibrous scaffolds coded with wavy patterns show an enhanced cellular infiltration. In addition, we further investigated whether the wavy patterns could regulate transforming growth factor-beta (TGF-β) production, a key signalling pathway involved in connective tissue development. Our results demonstrated that nanofibrous scaffolds coded with wavy patterns could induce TGF-β expression without the addition of a soluble growth factor. Our new approach could open up new avenues for fabricating bioinstructive scaffolds for regenerative medicine.
Bioinstructive scaffolds for regenerative medicine are characterized by their intrinsic properties that are capable of directing cell response and promoting wound healing.</description><subject>Biocompatible Materials - chemistry</subject><subject>Cells, Cultured</subject><subject>Chemistry</subject><subject>Connective tissues</subject><subject>Extracellular Matrix - chemistry</subject><subject>Extracellular Matrix - metabolism</subject><subject>Finite element method</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Medicine</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Physical properties</subject><subject>Scaffolds</subject><subject>Signal Transduction</subject><subject>Structural hierarchy</subject><subject>Substrates</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Trachea</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Wound healing</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU2LFDEQhoMo7rp68a4EvAmj-eqetIcFGRwVFgXRc6hOKttZuztjkl7Zn-C_NjuzjnpKUe_Dk4KXkKecveJMdq-tnhNnnGl_j5wKpthKyrW4f5xbdUIe5XzFWNvJVj4kJ5JLIbiSp-TXNsWJ-tBjonZJY6Yl0gnzQH_CNeY3FOhuhOJjqlRMtAxIPfQpWCghzjR6OgRMkOxQV-N4Q3NJiy1LQkdnmONenekUpmC_h_myLmsIIy0h5wVvpdNe9Zg88DBmfHL3npFv23dfNx9WF5_ff9y8vVhZ1TZlZbXuBffdWjvmlQZuoQHgEpV0orMgnBbOIRPopGvACSERm4ah76XwHcgzcn7w7pZ-QmdxLvUcs0thgnRjIgTzfzKHwVzGa6NbvlZtWwUv7gQp_lgwF3MVlzTXm40Q7VpJxbWo1MsDZVPMOaE__sCZua3NbPSnL_vathV-_u9NR_RPTxV4dgBStsf0b-_yN0mModw</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Chen, Honglin</creator><creator>Baptista, Danielle F</creator><creator>Criscenti, Giuseppe</creator><creator>Crispim, João</creator><creator>Fernandes, Hugo</creator><creator>van Blitterswijk, Clemens</creator><creator>Truckenmüller, Roman</creator><creator>Moroni, Lorenzo</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1298-6025</orcidid><orcidid>https://orcid.org/0000-0002-4574-7648</orcidid></search><sort><creationdate>20190801</creationdate><title>From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation</title><author>Chen, Honglin ; Baptista, Danielle F ; Criscenti, Giuseppe ; Crispim, João ; Fernandes, Hugo ; van Blitterswijk, Clemens ; Truckenmüller, Roman ; Moroni, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-c88b21f978d0f48a1ca5aa13e43d29ca2d82dde02ed3d5ad223ee550efb32f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatible Materials - chemistry</topic><topic>Cells, Cultured</topic><topic>Chemistry</topic><topic>Connective tissues</topic><topic>Extracellular Matrix - chemistry</topic><topic>Extracellular Matrix - metabolism</topic><topic>Finite element method</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Medicine</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Physical properties</topic><topic>Scaffolds</topic><topic>Signal Transduction</topic><topic>Structural hierarchy</topic><topic>Substrates</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Trachea</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Honglin</creatorcontrib><creatorcontrib>Baptista, Danielle F</creatorcontrib><creatorcontrib>Criscenti, Giuseppe</creatorcontrib><creatorcontrib>Crispim, João</creatorcontrib><creatorcontrib>Fernandes, Hugo</creatorcontrib><creatorcontrib>van Blitterswijk, Clemens</creatorcontrib><creatorcontrib>Truckenmüller, Roman</creatorcontrib><creatorcontrib>Moroni, Lorenzo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Honglin</au><au>Baptista, Danielle F</au><au>Criscenti, Giuseppe</au><au>Crispim, João</au><au>Fernandes, Hugo</au><au>van Blitterswijk, Clemens</au><au>Truckenmüller, Roman</au><au>Moroni, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>14312</spage><epage>14321</epage><pages>14312-14321</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Bioinstructive scaffolds for regenerative medicine are characterized by intrinsic properties capable of directing cell response and promoting wound healing. The design of such scaffolds requires the incorporation of well-defined physical properties that mimic the native extracellular matrix (ECM). Here, inspired by epithelial tissue morphogenesis, we present a novel approach to code nanofiber materials with controlled hierarchical wavy structures resembling the configurations of native EMC fibers through using thermally shrinking materials as substrates onto which the fibers are deposited. This approach could serve as a platform for fabricating functional scaffolds mimicking various tissues such as trachea, iris, artery wall and ciliary body. Modeling affirms that the mechanical properties of the fabricated wavy fibers could be regulated through varying their wavy patterns. The nanofibrous scaffolds coded with wavy patterns show an enhanced cellular infiltration. In addition, we further investigated whether the wavy patterns could regulate transforming growth factor-beta (TGF-β) production, a key signalling pathway involved in connective tissue development. Our results demonstrated that nanofibrous scaffolds coded with wavy patterns could induce TGF-β expression without the addition of a soluble growth factor. Our new approach could open up new avenues for fabricating bioinstructive scaffolds for regenerative medicine.
Bioinstructive scaffolds for regenerative medicine are characterized by their intrinsic properties that are capable of directing cell response and promoting wound healing.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31322143</pmid><doi>10.1039/c8nr10108f</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1298-6025</orcidid><orcidid>https://orcid.org/0000-0002-4574-7648</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-08, Vol.11 (3), p.14312-14321 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C8NR10108F |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Biocompatible Materials - chemistry Cells, Cultured Chemistry Connective tissues Extracellular Matrix - chemistry Extracellular Matrix - metabolism Finite element method Growth factors Humans Mechanical properties Medicine Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Nanofibers Nanofibers - chemistry Physical properties Scaffolds Signal Transduction Structural hierarchy Substrates Tissue Engineering Tissue Scaffolds - chemistry Trachea Transforming Growth Factor beta - metabolism Wound healing |
title | From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20fiber%20curls%20to%20mesh%20waves:%20a%20platform%20for%20the%20fabrication%20of%20hierarchically%20structured%20nanofibers%20mimicking%20natural%20tissue%20formation&rft.jtitle=Nanoscale&rft.au=Chen,%20Honglin&rft.date=2019-08-01&rft.volume=11&rft.issue=3&rft.spage=14312&rft.epage=14321&rft.pages=14312-14321&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr10108f&rft_dat=%3Cproquest_cross%3E2267434182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267434182&rft_id=info:pmid/31322143&rfr_iscdi=true |