From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation

Bioinstructive scaffolds for regenerative medicine are characterized by intrinsic properties capable of directing cell response and promoting wound healing. The design of such scaffolds requires the incorporation of well-defined physical properties that mimic the native extracellular matrix (ECM). H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-08, Vol.11 (3), p.14312-14321
Hauptverfasser: Chen, Honglin, Baptista, Danielle F, Criscenti, Giuseppe, Crispim, João, Fernandes, Hugo, van Blitterswijk, Clemens, Truckenmüller, Roman, Moroni, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14321
container_issue 3
container_start_page 14312
container_title Nanoscale
container_volume 11
creator Chen, Honglin
Baptista, Danielle F
Criscenti, Giuseppe
Crispim, João
Fernandes, Hugo
van Blitterswijk, Clemens
Truckenmüller, Roman
Moroni, Lorenzo
description Bioinstructive scaffolds for regenerative medicine are characterized by intrinsic properties capable of directing cell response and promoting wound healing. The design of such scaffolds requires the incorporation of well-defined physical properties that mimic the native extracellular matrix (ECM). Here, inspired by epithelial tissue morphogenesis, we present a novel approach to code nanofiber materials with controlled hierarchical wavy structures resembling the configurations of native EMC fibers through using thermally shrinking materials as substrates onto which the fibers are deposited. This approach could serve as a platform for fabricating functional scaffolds mimicking various tissues such as trachea, iris, artery wall and ciliary body. Modeling affirms that the mechanical properties of the fabricated wavy fibers could be regulated through varying their wavy patterns. The nanofibrous scaffolds coded with wavy patterns show an enhanced cellular infiltration. In addition, we further investigated whether the wavy patterns could regulate transforming growth factor-beta (TGF-β) production, a key signalling pathway involved in connective tissue development. Our results demonstrated that nanofibrous scaffolds coded with wavy patterns could induce TGF-β expression without the addition of a soluble growth factor. Our new approach could open up new avenues for fabricating bioinstructive scaffolds for regenerative medicine. Bioinstructive scaffolds for regenerative medicine are characterized by their intrinsic properties that are capable of directing cell response and promoting wound healing.
doi_str_mv 10.1039/c8nr10108f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8NR10108F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267434182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-c88b21f978d0f48a1ca5aa13e43d29ca2d82dde02ed3d5ad223ee550efb32f9a3</originalsourceid><addsrcrecordid>eNpVkU2LFDEQhoMo7rp68a4EvAmj-eqetIcFGRwVFgXRc6hOKttZuztjkl7Zn-C_NjuzjnpKUe_Dk4KXkKecveJMdq-tnhNnnGl_j5wKpthKyrW4f5xbdUIe5XzFWNvJVj4kJ5JLIbiSp-TXNsWJ-tBjonZJY6Yl0gnzQH_CNeY3FOhuhOJjqlRMtAxIPfQpWCghzjR6OgRMkOxQV-N4Q3NJiy1LQkdnmONenekUpmC_h_myLmsIIy0h5wVvpdNe9Zg88DBmfHL3npFv23dfNx9WF5_ff9y8vVhZ1TZlZbXuBffdWjvmlQZuoQHgEpV0orMgnBbOIRPopGvACSERm4ah76XwHcgzcn7w7pZ-QmdxLvUcs0thgnRjIgTzfzKHwVzGa6NbvlZtWwUv7gQp_lgwF3MVlzTXm40Q7VpJxbWo1MsDZVPMOaE__sCZua3NbPSnL_vathV-_u9NR_RPTxV4dgBStsf0b-_yN0mModw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267434182</pqid></control><display><type>article</type><title>From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Honglin ; Baptista, Danielle F ; Criscenti, Giuseppe ; Crispim, João ; Fernandes, Hugo ; van Blitterswijk, Clemens ; Truckenmüller, Roman ; Moroni, Lorenzo</creator><creatorcontrib>Chen, Honglin ; Baptista, Danielle F ; Criscenti, Giuseppe ; Crispim, João ; Fernandes, Hugo ; van Blitterswijk, Clemens ; Truckenmüller, Roman ; Moroni, Lorenzo</creatorcontrib><description>Bioinstructive scaffolds for regenerative medicine are characterized by intrinsic properties capable of directing cell response and promoting wound healing. The design of such scaffolds requires the incorporation of well-defined physical properties that mimic the native extracellular matrix (ECM). Here, inspired by epithelial tissue morphogenesis, we present a novel approach to code nanofiber materials with controlled hierarchical wavy structures resembling the configurations of native EMC fibers through using thermally shrinking materials as substrates onto which the fibers are deposited. This approach could serve as a platform for fabricating functional scaffolds mimicking various tissues such as trachea, iris, artery wall and ciliary body. Modeling affirms that the mechanical properties of the fabricated wavy fibers could be regulated through varying their wavy patterns. The nanofibrous scaffolds coded with wavy patterns show an enhanced cellular infiltration. In addition, we further investigated whether the wavy patterns could regulate transforming growth factor-beta (TGF-β) production, a key signalling pathway involved in connective tissue development. Our results demonstrated that nanofibrous scaffolds coded with wavy patterns could induce TGF-β expression without the addition of a soluble growth factor. Our new approach could open up new avenues for fabricating bioinstructive scaffolds for regenerative medicine. Bioinstructive scaffolds for regenerative medicine are characterized by their intrinsic properties that are capable of directing cell response and promoting wound healing.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr10108f</identifier><identifier>PMID: 31322143</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biocompatible Materials - chemistry ; Cells, Cultured ; Chemistry ; Connective tissues ; Extracellular Matrix - chemistry ; Extracellular Matrix - metabolism ; Finite element method ; Growth factors ; Humans ; Mechanical properties ; Medicine ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Nanofibers ; Nanofibers - chemistry ; Physical properties ; Scaffolds ; Signal Transduction ; Structural hierarchy ; Substrates ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Trachea ; Transforming Growth Factor beta - metabolism ; Wound healing</subject><ispartof>Nanoscale, 2019-08, Vol.11 (3), p.14312-14321</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-c88b21f978d0f48a1ca5aa13e43d29ca2d82dde02ed3d5ad223ee550efb32f9a3</citedby><cites>FETCH-LOGICAL-c465t-c88b21f978d0f48a1ca5aa13e43d29ca2d82dde02ed3d5ad223ee550efb32f9a3</cites><orcidid>0000-0003-1298-6025 ; 0000-0002-4574-7648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31322143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Honglin</creatorcontrib><creatorcontrib>Baptista, Danielle F</creatorcontrib><creatorcontrib>Criscenti, Giuseppe</creatorcontrib><creatorcontrib>Crispim, João</creatorcontrib><creatorcontrib>Fernandes, Hugo</creatorcontrib><creatorcontrib>van Blitterswijk, Clemens</creatorcontrib><creatorcontrib>Truckenmüller, Roman</creatorcontrib><creatorcontrib>Moroni, Lorenzo</creatorcontrib><title>From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Bioinstructive scaffolds for regenerative medicine are characterized by intrinsic properties capable of directing cell response and promoting wound healing. The design of such scaffolds requires the incorporation of well-defined physical properties that mimic the native extracellular matrix (ECM). Here, inspired by epithelial tissue morphogenesis, we present a novel approach to code nanofiber materials with controlled hierarchical wavy structures resembling the configurations of native EMC fibers through using thermally shrinking materials as substrates onto which the fibers are deposited. This approach could serve as a platform for fabricating functional scaffolds mimicking various tissues such as trachea, iris, artery wall and ciliary body. Modeling affirms that the mechanical properties of the fabricated wavy fibers could be regulated through varying their wavy patterns. The nanofibrous scaffolds coded with wavy patterns show an enhanced cellular infiltration. In addition, we further investigated whether the wavy patterns could regulate transforming growth factor-beta (TGF-β) production, a key signalling pathway involved in connective tissue development. Our results demonstrated that nanofibrous scaffolds coded with wavy patterns could induce TGF-β expression without the addition of a soluble growth factor. Our new approach could open up new avenues for fabricating bioinstructive scaffolds for regenerative medicine. Bioinstructive scaffolds for regenerative medicine are characterized by their intrinsic properties that are capable of directing cell response and promoting wound healing.</description><subject>Biocompatible Materials - chemistry</subject><subject>Cells, Cultured</subject><subject>Chemistry</subject><subject>Connective tissues</subject><subject>Extracellular Matrix - chemistry</subject><subject>Extracellular Matrix - metabolism</subject><subject>Finite element method</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Medicine</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Physical properties</subject><subject>Scaffolds</subject><subject>Signal Transduction</subject><subject>Structural hierarchy</subject><subject>Substrates</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Trachea</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Wound healing</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU2LFDEQhoMo7rp68a4EvAmj-eqetIcFGRwVFgXRc6hOKttZuztjkl7Zn-C_NjuzjnpKUe_Dk4KXkKecveJMdq-tnhNnnGl_j5wKpthKyrW4f5xbdUIe5XzFWNvJVj4kJ5JLIbiSp-TXNsWJ-tBjonZJY6Yl0gnzQH_CNeY3FOhuhOJjqlRMtAxIPfQpWCghzjR6OgRMkOxQV-N4Q3NJiy1LQkdnmONenekUpmC_h_myLmsIIy0h5wVvpdNe9Zg88DBmfHL3npFv23dfNx9WF5_ff9y8vVhZ1TZlZbXuBffdWjvmlQZuoQHgEpV0orMgnBbOIRPopGvACSERm4ah76XwHcgzcn7w7pZ-QmdxLvUcs0thgnRjIgTzfzKHwVzGa6NbvlZtWwUv7gQp_lgwF3MVlzTXm40Q7VpJxbWo1MsDZVPMOaE__sCZua3NbPSnL_vathV-_u9NR_RPTxV4dgBStsf0b-_yN0mModw</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Chen, Honglin</creator><creator>Baptista, Danielle F</creator><creator>Criscenti, Giuseppe</creator><creator>Crispim, João</creator><creator>Fernandes, Hugo</creator><creator>van Blitterswijk, Clemens</creator><creator>Truckenmüller, Roman</creator><creator>Moroni, Lorenzo</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1298-6025</orcidid><orcidid>https://orcid.org/0000-0002-4574-7648</orcidid></search><sort><creationdate>20190801</creationdate><title>From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation</title><author>Chen, Honglin ; Baptista, Danielle F ; Criscenti, Giuseppe ; Crispim, João ; Fernandes, Hugo ; van Blitterswijk, Clemens ; Truckenmüller, Roman ; Moroni, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-c88b21f978d0f48a1ca5aa13e43d29ca2d82dde02ed3d5ad223ee550efb32f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatible Materials - chemistry</topic><topic>Cells, Cultured</topic><topic>Chemistry</topic><topic>Connective tissues</topic><topic>Extracellular Matrix - chemistry</topic><topic>Extracellular Matrix - metabolism</topic><topic>Finite element method</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Medicine</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Physical properties</topic><topic>Scaffolds</topic><topic>Signal Transduction</topic><topic>Structural hierarchy</topic><topic>Substrates</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Trachea</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Honglin</creatorcontrib><creatorcontrib>Baptista, Danielle F</creatorcontrib><creatorcontrib>Criscenti, Giuseppe</creatorcontrib><creatorcontrib>Crispim, João</creatorcontrib><creatorcontrib>Fernandes, Hugo</creatorcontrib><creatorcontrib>van Blitterswijk, Clemens</creatorcontrib><creatorcontrib>Truckenmüller, Roman</creatorcontrib><creatorcontrib>Moroni, Lorenzo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Honglin</au><au>Baptista, Danielle F</au><au>Criscenti, Giuseppe</au><au>Crispim, João</au><au>Fernandes, Hugo</au><au>van Blitterswijk, Clemens</au><au>Truckenmüller, Roman</au><au>Moroni, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>14312</spage><epage>14321</epage><pages>14312-14321</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Bioinstructive scaffolds for regenerative medicine are characterized by intrinsic properties capable of directing cell response and promoting wound healing. The design of such scaffolds requires the incorporation of well-defined physical properties that mimic the native extracellular matrix (ECM). Here, inspired by epithelial tissue morphogenesis, we present a novel approach to code nanofiber materials with controlled hierarchical wavy structures resembling the configurations of native EMC fibers through using thermally shrinking materials as substrates onto which the fibers are deposited. This approach could serve as a platform for fabricating functional scaffolds mimicking various tissues such as trachea, iris, artery wall and ciliary body. Modeling affirms that the mechanical properties of the fabricated wavy fibers could be regulated through varying their wavy patterns. The nanofibrous scaffolds coded with wavy patterns show an enhanced cellular infiltration. In addition, we further investigated whether the wavy patterns could regulate transforming growth factor-beta (TGF-β) production, a key signalling pathway involved in connective tissue development. Our results demonstrated that nanofibrous scaffolds coded with wavy patterns could induce TGF-β expression without the addition of a soluble growth factor. Our new approach could open up new avenues for fabricating bioinstructive scaffolds for regenerative medicine. Bioinstructive scaffolds for regenerative medicine are characterized by their intrinsic properties that are capable of directing cell response and promoting wound healing.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31322143</pmid><doi>10.1039/c8nr10108f</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1298-6025</orcidid><orcidid>https://orcid.org/0000-0002-4574-7648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-08, Vol.11 (3), p.14312-14321
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_C8NR10108F
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Biocompatible Materials - chemistry
Cells, Cultured
Chemistry
Connective tissues
Extracellular Matrix - chemistry
Extracellular Matrix - metabolism
Finite element method
Growth factors
Humans
Mechanical properties
Medicine
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Nanofibers
Nanofibers - chemistry
Physical properties
Scaffolds
Signal Transduction
Structural hierarchy
Substrates
Tissue Engineering
Tissue Scaffolds - chemistry
Trachea
Transforming Growth Factor beta - metabolism
Wound healing
title From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20fiber%20curls%20to%20mesh%20waves:%20a%20platform%20for%20the%20fabrication%20of%20hierarchically%20structured%20nanofibers%20mimicking%20natural%20tissue%20formation&rft.jtitle=Nanoscale&rft.au=Chen,%20Honglin&rft.date=2019-08-01&rft.volume=11&rft.issue=3&rft.spage=14312&rft.epage=14321&rft.pages=14312-14321&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr10108f&rft_dat=%3Cproquest_cross%3E2267434182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267434182&rft_id=info:pmid/31322143&rfr_iscdi=true