Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime
Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precessi...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-11, Vol.1 (44), p.2559-2564 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2564 |
---|---|
container_issue | 44 |
container_start_page | 2559 |
container_title | Nanoscale |
container_volume | 1 |
creator | Chou, C.-T Jacobson, N. T Moussa, J. E Baczewski, A. D Chuang, Y Liu, C.-Y Li, J.-Y Lu, T. M |
description | Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precession is not randomized by disorder. In this letter, we report the observation of a gate-induced crossover from weak localization to weak anti-localization in the magneto-resistance of a high-mobility two-dimensional hole gas in a strained germanium quantum well. From the magneto-resistance, we extract the phase-coherence time, spin-orbit precession time, spin-orbit energy splitting, and cubic Rashba coefficient over a wide density range. The mobility and the mean free path increase with increasing hole density, while the spin precession length decreases due to increasingly stronger spin-orbit coupling. As the density becomes larger than ∼6 × 10
11
cm
−2
, the spin precession length becomes shorter than the mean free path, and the system enters the ballistic spin transport regime. We also report here the numerical methods and code developed for calculating the magneto-resistance in the ballistic regime, where the commonly used HLN and ILP models for analyzing weak localization and anti-localization are not valid. These results pave the way toward silicon-compatible spintronic devices.
Gateable ballistic spin transport is achieved in Ge quantum wells. |
doi_str_mv | 10.1039/c8nr05677c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8NR05677C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133401970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-3d5a609104fd776ff888303df6bc0c3d6213114ba833a31d478e8e838ef2f2593</originalsourceid><addsrcrecordid>eNpFkctLBDEMxosovi_elaI3YbSdzLYzR1l8gSiIoreh24dbnWm17SjrX291dSWHhOSXD_IFoR1KjiiB5ljWLpAR41wuofWSVKQA4OXyombVGtqI8ZkQ1gCDVbQGpByx3F9Hjw9avGDhki06L0VnP0Wy3mFvcPrwhbK9djE3RIenvtMRW4efdOiFs0OPJ3rmncJpqrGyxgzRvmsc9FPe2kIrRnRRb__mTXR_dno3viiubs4vxydXhQTGUwFqJBhpKKmM4pwZU9c1EFCGTSSRoFhJgdJqImoAAVRVvNY5oNamNOWogU20P9f1Mdk2Spu0nErvnJappRXnQKsMHcyh1-DfBh1T--yHkI-KbdaHitCGk0wdzikZfIxBm_Y12F6EWUtJ--10O66vb3-cHmd471dymPRaLdA_azOwOwdClIvp_6vgCy5Sgfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133401970</pqid></control><display><type>article</type><title>Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime</title><source>Royal Society Of Chemistry Journals</source><creator>Chou, C.-T ; Jacobson, N. T ; Moussa, J. E ; Baczewski, A. D ; Chuang, Y ; Liu, C.-Y ; Li, J.-Y ; Lu, T. M</creator><creatorcontrib>Chou, C.-T ; Jacobson, N. T ; Moussa, J. E ; Baczewski, A. D ; Chuang, Y ; Liu, C.-Y ; Li, J.-Y ; Lu, T. M ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precession is not randomized by disorder. In this letter, we report the observation of a gate-induced crossover from weak localization to weak anti-localization in the magneto-resistance of a high-mobility two-dimensional hole gas in a strained germanium quantum well. From the magneto-resistance, we extract the phase-coherence time, spin-orbit precession time, spin-orbit energy splitting, and cubic Rashba coefficient over a wide density range. The mobility and the mean free path increase with increasing hole density, while the spin precession length decreases due to increasingly stronger spin-orbit coupling. As the density becomes larger than ∼6 × 10
11
cm
−2
, the spin precession length becomes shorter than the mean free path, and the system enters the ballistic spin transport regime. We also report here the numerical methods and code developed for calculating the magneto-resistance in the ballistic regime, where the commonly used HLN and ILP models for analyzing weak localization and anti-localization are not valid. These results pave the way toward silicon-compatible spintronic devices.
Gateable ballistic spin transport is achieved in Ge quantum wells.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr05677c</identifier><identifier>PMID: 30256364</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Crossovers ; ENGINEERING ; Field effect transistors ; Hole density ; Localization ; Mean free path ; Numerical methods ; Precession ; Quantum wells ; Semiconductor devices ; Spin-orbit interactions ; Stability ; Transport</subject><ispartof>Nanoscale, 2018-11, Vol.1 (44), p.2559-2564</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-3d5a609104fd776ff888303df6bc0c3d6213114ba833a31d478e8e838ef2f2593</citedby><cites>FETCH-LOGICAL-c367t-3d5a609104fd776ff888303df6bc0c3d6213114ba833a31d478e8e838ef2f2593</cites><orcidid>0000-0002-3363-1226 ; 0000000233631226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30256364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1477314$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chou, C.-T</creatorcontrib><creatorcontrib>Jacobson, N. T</creatorcontrib><creatorcontrib>Moussa, J. E</creatorcontrib><creatorcontrib>Baczewski, A. D</creatorcontrib><creatorcontrib>Chuang, Y</creatorcontrib><creatorcontrib>Liu, C.-Y</creatorcontrib><creatorcontrib>Li, J.-Y</creatorcontrib><creatorcontrib>Lu, T. M</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precession is not randomized by disorder. In this letter, we report the observation of a gate-induced crossover from weak localization to weak anti-localization in the magneto-resistance of a high-mobility two-dimensional hole gas in a strained germanium quantum well. From the magneto-resistance, we extract the phase-coherence time, spin-orbit precession time, spin-orbit energy splitting, and cubic Rashba coefficient over a wide density range. The mobility and the mean free path increase with increasing hole density, while the spin precession length decreases due to increasingly stronger spin-orbit coupling. As the density becomes larger than ∼6 × 10
11
cm
−2
, the spin precession length becomes shorter than the mean free path, and the system enters the ballistic spin transport regime. We also report here the numerical methods and code developed for calculating the magneto-resistance in the ballistic regime, where the commonly used HLN and ILP models for analyzing weak localization and anti-localization are not valid. These results pave the way toward silicon-compatible spintronic devices.
Gateable ballistic spin transport is achieved in Ge quantum wells.</description><subject>Crossovers</subject><subject>ENGINEERING</subject><subject>Field effect transistors</subject><subject>Hole density</subject><subject>Localization</subject><subject>Mean free path</subject><subject>Numerical methods</subject><subject>Precession</subject><subject>Quantum wells</subject><subject>Semiconductor devices</subject><subject>Spin-orbit interactions</subject><subject>Stability</subject><subject>Transport</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkctLBDEMxosovi_elaI3YbSdzLYzR1l8gSiIoreh24dbnWm17SjrX291dSWHhOSXD_IFoR1KjiiB5ljWLpAR41wuofWSVKQA4OXyombVGtqI8ZkQ1gCDVbQGpByx3F9Hjw9avGDhki06L0VnP0Wy3mFvcPrwhbK9djE3RIenvtMRW4efdOiFs0OPJ3rmncJpqrGyxgzRvmsc9FPe2kIrRnRRb__mTXR_dno3viiubs4vxydXhQTGUwFqJBhpKKmM4pwZU9c1EFCGTSSRoFhJgdJqImoAAVRVvNY5oNamNOWogU20P9f1Mdk2Spu0nErvnJappRXnQKsMHcyh1-DfBh1T--yHkI-KbdaHitCGk0wdzikZfIxBm_Y12F6EWUtJ--10O66vb3-cHmd471dymPRaLdA_azOwOwdClIvp_6vgCy5Sgfg</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Chou, C.-T</creator><creator>Jacobson, N. T</creator><creator>Moussa, J. E</creator><creator>Baczewski, A. D</creator><creator>Chuang, Y</creator><creator>Liu, C.-Y</creator><creator>Li, J.-Y</creator><creator>Lu, T. M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3363-1226</orcidid><orcidid>https://orcid.org/0000000233631226</orcidid></search><sort><creationdate>20181115</creationdate><title>Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime</title><author>Chou, C.-T ; Jacobson, N. T ; Moussa, J. E ; Baczewski, A. D ; Chuang, Y ; Liu, C.-Y ; Li, J.-Y ; Lu, T. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-3d5a609104fd776ff888303df6bc0c3d6213114ba833a31d478e8e838ef2f2593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crossovers</topic><topic>ENGINEERING</topic><topic>Field effect transistors</topic><topic>Hole density</topic><topic>Localization</topic><topic>Mean free path</topic><topic>Numerical methods</topic><topic>Precession</topic><topic>Quantum wells</topic><topic>Semiconductor devices</topic><topic>Spin-orbit interactions</topic><topic>Stability</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, C.-T</creatorcontrib><creatorcontrib>Jacobson, N. T</creatorcontrib><creatorcontrib>Moussa, J. E</creatorcontrib><creatorcontrib>Baczewski, A. D</creatorcontrib><creatorcontrib>Chuang, Y</creatorcontrib><creatorcontrib>Liu, C.-Y</creatorcontrib><creatorcontrib>Li, J.-Y</creatorcontrib><creatorcontrib>Lu, T. M</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, C.-T</au><au>Jacobson, N. T</au><au>Moussa, J. E</au><au>Baczewski, A. D</au><au>Chuang, Y</au><au>Liu, C.-Y</au><au>Li, J.-Y</au><au>Lu, T. M</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-11-15</date><risdate>2018</risdate><volume>1</volume><issue>44</issue><spage>2559</spage><epage>2564</epage><pages>2559-2564</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precession is not randomized by disorder. In this letter, we report the observation of a gate-induced crossover from weak localization to weak anti-localization in the magneto-resistance of a high-mobility two-dimensional hole gas in a strained germanium quantum well. From the magneto-resistance, we extract the phase-coherence time, spin-orbit precession time, spin-orbit energy splitting, and cubic Rashba coefficient over a wide density range. The mobility and the mean free path increase with increasing hole density, while the spin precession length decreases due to increasingly stronger spin-orbit coupling. As the density becomes larger than ∼6 × 10
11
cm
−2
, the spin precession length becomes shorter than the mean free path, and the system enters the ballistic spin transport regime. We also report here the numerical methods and code developed for calculating the magneto-resistance in the ballistic regime, where the commonly used HLN and ILP models for analyzing weak localization and anti-localization are not valid. These results pave the way toward silicon-compatible spintronic devices.
Gateable ballistic spin transport is achieved in Ge quantum wells.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30256364</pmid><doi>10.1039/c8nr05677c</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3363-1226</orcidid><orcidid>https://orcid.org/0000000233631226</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2018-11, Vol.1 (44), p.2559-2564 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C8NR05677C |
source | Royal Society Of Chemistry Journals |
subjects | Crossovers ENGINEERING Field effect transistors Hole density Localization Mean free path Numerical methods Precession Quantum wells Semiconductor devices Spin-orbit interactions Stability Transport |
title | Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20anti-localization%20of%20two-dimensional%20holes%20in%20germanium%20beyond%20the%20diffusive%20regime&rft.jtitle=Nanoscale&rft.au=Chou,%20C.-T&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-11-15&rft.volume=1&rft.issue=44&rft.spage=2559&rft.epage=2564&rft.pages=2559-2564&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr05677c&rft_dat=%3Cproquest_cross%3E2133401970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133401970&rft_id=info:pmid/30256364&rfr_iscdi=true |