Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime

Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precessi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-11, Vol.1 (44), p.2559-2564
Hauptverfasser: Chou, C.-T, Jacobson, N. T, Moussa, J. E, Baczewski, A. D, Chuang, Y, Liu, C.-Y, Li, J.-Y, Lu, T. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2564
container_issue 44
container_start_page 2559
container_title Nanoscale
container_volume 1
creator Chou, C.-T
Jacobson, N. T
Moussa, J. E
Baczewski, A. D
Chuang, Y
Liu, C.-Y
Li, J.-Y
Lu, T. M
description Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precession is not randomized by disorder. In this letter, we report the observation of a gate-induced crossover from weak localization to weak anti-localization in the magneto-resistance of a high-mobility two-dimensional hole gas in a strained germanium quantum well. From the magneto-resistance, we extract the phase-coherence time, spin-orbit precession time, spin-orbit energy splitting, and cubic Rashba coefficient over a wide density range. The mobility and the mean free path increase with increasing hole density, while the spin precession length decreases due to increasingly stronger spin-orbit coupling. As the density becomes larger than ∼6 × 10 11 cm −2 , the spin precession length becomes shorter than the mean free path, and the system enters the ballistic spin transport regime. We also report here the numerical methods and code developed for calculating the magneto-resistance in the ballistic regime, where the commonly used HLN and ILP models for analyzing weak localization and anti-localization are not valid. These results pave the way toward silicon-compatible spintronic devices. Gateable ballistic spin transport is achieved in Ge quantum wells.
doi_str_mv 10.1039/c8nr05677c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8NR05677C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133401970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-3d5a609104fd776ff888303df6bc0c3d6213114ba833a31d478e8e838ef2f2593</originalsourceid><addsrcrecordid>eNpFkctLBDEMxosovi_elaI3YbSdzLYzR1l8gSiIoreh24dbnWm17SjrX291dSWHhOSXD_IFoR1KjiiB5ljWLpAR41wuofWSVKQA4OXyombVGtqI8ZkQ1gCDVbQGpByx3F9Hjw9avGDhki06L0VnP0Wy3mFvcPrwhbK9djE3RIenvtMRW4efdOiFs0OPJ3rmncJpqrGyxgzRvmsc9FPe2kIrRnRRb__mTXR_dno3viiubs4vxydXhQTGUwFqJBhpKKmM4pwZU9c1EFCGTSSRoFhJgdJqImoAAVRVvNY5oNamNOWogU20P9f1Mdk2Spu0nErvnJappRXnQKsMHcyh1-DfBh1T--yHkI-KbdaHitCGk0wdzikZfIxBm_Y12F6EWUtJ--10O66vb3-cHmd471dymPRaLdA_azOwOwdClIvp_6vgCy5Sgfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133401970</pqid></control><display><type>article</type><title>Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime</title><source>Royal Society Of Chemistry Journals</source><creator>Chou, C.-T ; Jacobson, N. T ; Moussa, J. E ; Baczewski, A. D ; Chuang, Y ; Liu, C.-Y ; Li, J.-Y ; Lu, T. M</creator><creatorcontrib>Chou, C.-T ; Jacobson, N. T ; Moussa, J. E ; Baczewski, A. D ; Chuang, Y ; Liu, C.-Y ; Li, J.-Y ; Lu, T. M ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precession is not randomized by disorder. In this letter, we report the observation of a gate-induced crossover from weak localization to weak anti-localization in the magneto-resistance of a high-mobility two-dimensional hole gas in a strained germanium quantum well. From the magneto-resistance, we extract the phase-coherence time, spin-orbit precession time, spin-orbit energy splitting, and cubic Rashba coefficient over a wide density range. The mobility and the mean free path increase with increasing hole density, while the spin precession length decreases due to increasingly stronger spin-orbit coupling. As the density becomes larger than ∼6 × 10 11 cm −2 , the spin precession length becomes shorter than the mean free path, and the system enters the ballistic spin transport regime. We also report here the numerical methods and code developed for calculating the magneto-resistance in the ballistic regime, where the commonly used HLN and ILP models for analyzing weak localization and anti-localization are not valid. These results pave the way toward silicon-compatible spintronic devices. Gateable ballistic spin transport is achieved in Ge quantum wells.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr05677c</identifier><identifier>PMID: 30256364</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Crossovers ; ENGINEERING ; Field effect transistors ; Hole density ; Localization ; Mean free path ; Numerical methods ; Precession ; Quantum wells ; Semiconductor devices ; Spin-orbit interactions ; Stability ; Transport</subject><ispartof>Nanoscale, 2018-11, Vol.1 (44), p.2559-2564</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-3d5a609104fd776ff888303df6bc0c3d6213114ba833a31d478e8e838ef2f2593</citedby><cites>FETCH-LOGICAL-c367t-3d5a609104fd776ff888303df6bc0c3d6213114ba833a31d478e8e838ef2f2593</cites><orcidid>0000-0002-3363-1226 ; 0000000233631226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30256364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1477314$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chou, C.-T</creatorcontrib><creatorcontrib>Jacobson, N. T</creatorcontrib><creatorcontrib>Moussa, J. E</creatorcontrib><creatorcontrib>Baczewski, A. D</creatorcontrib><creatorcontrib>Chuang, Y</creatorcontrib><creatorcontrib>Liu, C.-Y</creatorcontrib><creatorcontrib>Li, J.-Y</creatorcontrib><creatorcontrib>Lu, T. M</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precession is not randomized by disorder. In this letter, we report the observation of a gate-induced crossover from weak localization to weak anti-localization in the magneto-resistance of a high-mobility two-dimensional hole gas in a strained germanium quantum well. From the magneto-resistance, we extract the phase-coherence time, spin-orbit precession time, spin-orbit energy splitting, and cubic Rashba coefficient over a wide density range. The mobility and the mean free path increase with increasing hole density, while the spin precession length decreases due to increasingly stronger spin-orbit coupling. As the density becomes larger than ∼6 × 10 11 cm −2 , the spin precession length becomes shorter than the mean free path, and the system enters the ballistic spin transport regime. We also report here the numerical methods and code developed for calculating the magneto-resistance in the ballistic regime, where the commonly used HLN and ILP models for analyzing weak localization and anti-localization are not valid. These results pave the way toward silicon-compatible spintronic devices. Gateable ballistic spin transport is achieved in Ge quantum wells.</description><subject>Crossovers</subject><subject>ENGINEERING</subject><subject>Field effect transistors</subject><subject>Hole density</subject><subject>Localization</subject><subject>Mean free path</subject><subject>Numerical methods</subject><subject>Precession</subject><subject>Quantum wells</subject><subject>Semiconductor devices</subject><subject>Spin-orbit interactions</subject><subject>Stability</subject><subject>Transport</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkctLBDEMxosovi_elaI3YbSdzLYzR1l8gSiIoreh24dbnWm17SjrX291dSWHhOSXD_IFoR1KjiiB5ljWLpAR41wuofWSVKQA4OXyombVGtqI8ZkQ1gCDVbQGpByx3F9Hjw9avGDhki06L0VnP0Wy3mFvcPrwhbK9djE3RIenvtMRW4efdOiFs0OPJ3rmncJpqrGyxgzRvmsc9FPe2kIrRnRRb__mTXR_dno3viiubs4vxydXhQTGUwFqJBhpKKmM4pwZU9c1EFCGTSSRoFhJgdJqImoAAVRVvNY5oNamNOWogU20P9f1Mdk2Spu0nErvnJappRXnQKsMHcyh1-DfBh1T--yHkI-KbdaHitCGk0wdzikZfIxBm_Y12F6EWUtJ--10O66vb3-cHmd471dymPRaLdA_azOwOwdClIvp_6vgCy5Sgfg</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Chou, C.-T</creator><creator>Jacobson, N. T</creator><creator>Moussa, J. E</creator><creator>Baczewski, A. D</creator><creator>Chuang, Y</creator><creator>Liu, C.-Y</creator><creator>Li, J.-Y</creator><creator>Lu, T. M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3363-1226</orcidid><orcidid>https://orcid.org/0000000233631226</orcidid></search><sort><creationdate>20181115</creationdate><title>Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime</title><author>Chou, C.-T ; Jacobson, N. T ; Moussa, J. E ; Baczewski, A. D ; Chuang, Y ; Liu, C.-Y ; Li, J.-Y ; Lu, T. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-3d5a609104fd776ff888303df6bc0c3d6213114ba833a31d478e8e838ef2f2593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crossovers</topic><topic>ENGINEERING</topic><topic>Field effect transistors</topic><topic>Hole density</topic><topic>Localization</topic><topic>Mean free path</topic><topic>Numerical methods</topic><topic>Precession</topic><topic>Quantum wells</topic><topic>Semiconductor devices</topic><topic>Spin-orbit interactions</topic><topic>Stability</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, C.-T</creatorcontrib><creatorcontrib>Jacobson, N. T</creatorcontrib><creatorcontrib>Moussa, J. E</creatorcontrib><creatorcontrib>Baczewski, A. D</creatorcontrib><creatorcontrib>Chuang, Y</creatorcontrib><creatorcontrib>Liu, C.-Y</creatorcontrib><creatorcontrib>Li, J.-Y</creatorcontrib><creatorcontrib>Lu, T. M</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, C.-T</au><au>Jacobson, N. T</au><au>Moussa, J. E</au><au>Baczewski, A. D</au><au>Chuang, Y</au><au>Liu, C.-Y</au><au>Li, J.-Y</au><au>Lu, T. M</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-11-15</date><risdate>2018</risdate><volume>1</volume><issue>44</issue><spage>2559</spage><epage>2564</epage><pages>2559-2564</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precession is not randomized by disorder. In this letter, we report the observation of a gate-induced crossover from weak localization to weak anti-localization in the magneto-resistance of a high-mobility two-dimensional hole gas in a strained germanium quantum well. From the magneto-resistance, we extract the phase-coherence time, spin-orbit precession time, spin-orbit energy splitting, and cubic Rashba coefficient over a wide density range. The mobility and the mean free path increase with increasing hole density, while the spin precession length decreases due to increasingly stronger spin-orbit coupling. As the density becomes larger than ∼6 × 10 11 cm −2 , the spin precession length becomes shorter than the mean free path, and the system enters the ballistic spin transport regime. We also report here the numerical methods and code developed for calculating the magneto-resistance in the ballistic regime, where the commonly used HLN and ILP models for analyzing weak localization and anti-localization are not valid. These results pave the way toward silicon-compatible spintronic devices. Gateable ballistic spin transport is achieved in Ge quantum wells.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30256364</pmid><doi>10.1039/c8nr05677c</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3363-1226</orcidid><orcidid>https://orcid.org/0000000233631226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-11, Vol.1 (44), p.2559-2564
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_C8NR05677C
source Royal Society Of Chemistry Journals
subjects Crossovers
ENGINEERING
Field effect transistors
Hole density
Localization
Mean free path
Numerical methods
Precession
Quantum wells
Semiconductor devices
Spin-orbit interactions
Stability
Transport
title Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20anti-localization%20of%20two-dimensional%20holes%20in%20germanium%20beyond%20the%20diffusive%20regime&rft.jtitle=Nanoscale&rft.au=Chou,%20C.-T&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-11-15&rft.volume=1&rft.issue=44&rft.spage=2559&rft.epage=2564&rft.pages=2559-2564&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr05677c&rft_dat=%3Cproquest_cross%3E2133401970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133401970&rft_id=info:pmid/30256364&rfr_iscdi=true