Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications

Brain-inspired neuromorphic computing has shown great promise beyond the conventional Boolean logic. Nanoscale electronic synapses, which have stringent demands for integration density, dynamic range, energy consumption, etc., are key computational elements of the brain-inspired neuromorphic system....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-08, Vol.10 (33), p.15826-15833
Hauptverfasser: Chen, Lin, Wang, Tian-Yu, Dai, Ya-Wei, Cha, Ming-Yang, Zhu, Hao, Sun, Qing-Qing, Ding, Shi-Jin, Zhou, Peng, Chua, Leon, Zhang, David Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15833
container_issue 33
container_start_page 15826
container_title Nanoscale
container_volume 10
creator Chen, Lin
Wang, Tian-Yu
Dai, Ya-Wei
Cha, Ming-Yang
Zhu, Hao
Sun, Qing-Qing
Ding, Shi-Jin
Zhou, Peng
Chua, Leon
Zhang, David Wei
description Brain-inspired neuromorphic computing has shown great promise beyond the conventional Boolean logic. Nanoscale electronic synapses, which have stringent demands for integration density, dynamic range, energy consumption, etc., are key computational elements of the brain-inspired neuromorphic system. Ferroelectric tunneling junctions have been shown to be ideal candidates to realize the functions of electronic synapses due to their ultra-low energy consumption and the nature of ferroelectric tunneling. Here, we report a new electronic synapse based on a three-dimensional vertical Hf0.5Zr0.5O2-based ferroelectric tunneling junction that meets the full functions of biological synapses. The fabricated three-dimensional vertical ferroelectric tunneling junction synapse (FTJS) exhibits high integration density and excellent performances, such as analog-like conductance transition under a training scheme, low energy consumption of synaptic weight update (1.8 pJ per spike) and good repeatability (>103 cycles). In addition, the implementation of pattern training in hardware with strong tolerance to input faults and variations is also illustrated in the 3D vertical FTJS array. Furthermore, pattern classification and recognition are achieved, and these results demonstrate that the Hf0.5Zr0.5O2-based FTJS has high potential to be an ideal electronic component for neuromorphic system applications.
doi_str_mv 10.1039/c8nr04734k
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8NR04734K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30105324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c994-8e58b56e38e8fca738e255b7eca776022c7c5ad520ba68b3c5126a3c3f5d9aa23</originalsourceid><addsrcrecordid>eNo9kEFPg0AQRjdGY2v14g8wezahLrssLEfTWGtsbGLqxQsZliHSUiCzENJ_L221p_cd3szhMXbvi6kvVPxkTUUiiFSwvWBjKQLhKRXJy_MOgxG7cW4jRBirUF2zkRK-0EoGY9Z_lS2BV9Y9b-oeiS9yLqaaf9MRKy55Cg4zniNRjSXalgrL266qsOSbrrJtUVfc7StoHDqe18R_gLIeCHmFHUE5oO1r2nJomrKwcDhwt-wqh9Lh3R8nbD1_Wc8W3nL1-jZ7Xno2jgPPoDapDlEZNLmFaKDUOo1w2FEopLSR1ZBpKVIITaqs9mUIyqpcZzGAVBP2eHprqXaOME8aKnZA-8QXySFeMjMfn8d474P8cJKbLt1hdlb_a6lftGdq9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Lin ; Wang, Tian-Yu ; Dai, Ya-Wei ; Cha, Ming-Yang ; Zhu, Hao ; Sun, Qing-Qing ; Ding, Shi-Jin ; Zhou, Peng ; Chua, Leon ; Zhang, David Wei</creator><creatorcontrib>Chen, Lin ; Wang, Tian-Yu ; Dai, Ya-Wei ; Cha, Ming-Yang ; Zhu, Hao ; Sun, Qing-Qing ; Ding, Shi-Jin ; Zhou, Peng ; Chua, Leon ; Zhang, David Wei</creatorcontrib><description>Brain-inspired neuromorphic computing has shown great promise beyond the conventional Boolean logic. Nanoscale electronic synapses, which have stringent demands for integration density, dynamic range, energy consumption, etc., are key computational elements of the brain-inspired neuromorphic system. Ferroelectric tunneling junctions have been shown to be ideal candidates to realize the functions of electronic synapses due to their ultra-low energy consumption and the nature of ferroelectric tunneling. Here, we report a new electronic synapse based on a three-dimensional vertical Hf0.5Zr0.5O2-based ferroelectric tunneling junction that meets the full functions of biological synapses. The fabricated three-dimensional vertical ferroelectric tunneling junction synapse (FTJS) exhibits high integration density and excellent performances, such as analog-like conductance transition under a training scheme, low energy consumption of synaptic weight update (1.8 pJ per spike) and good repeatability (&gt;103 cycles). In addition, the implementation of pattern training in hardware with strong tolerance to input faults and variations is also illustrated in the 3D vertical FTJS array. Furthermore, pattern classification and recognition are achieved, and these results demonstrate that the Hf0.5Zr0.5O2-based FTJS has high potential to be an ideal electronic component for neuromorphic system applications.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr04734k</identifier><identifier>PMID: 30105324</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanoscale, 2018-08, Vol.10 (33), p.15826-15833</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c994-8e58b56e38e8fca738e255b7eca776022c7c5ad520ba68b3c5126a3c3f5d9aa23</citedby><cites>FETCH-LOGICAL-c994-8e58b56e38e8fca738e255b7eca776022c7c5ad520ba68b3c5126a3c3f5d9aa23</cites><orcidid>0000-0002-7145-7564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30105324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Tian-Yu</creatorcontrib><creatorcontrib>Dai, Ya-Wei</creatorcontrib><creatorcontrib>Cha, Ming-Yang</creatorcontrib><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Sun, Qing-Qing</creatorcontrib><creatorcontrib>Ding, Shi-Jin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Chua, Leon</creatorcontrib><creatorcontrib>Zhang, David Wei</creatorcontrib><title>Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Brain-inspired neuromorphic computing has shown great promise beyond the conventional Boolean logic. Nanoscale electronic synapses, which have stringent demands for integration density, dynamic range, energy consumption, etc., are key computational elements of the brain-inspired neuromorphic system. Ferroelectric tunneling junctions have been shown to be ideal candidates to realize the functions of electronic synapses due to their ultra-low energy consumption and the nature of ferroelectric tunneling. Here, we report a new electronic synapse based on a three-dimensional vertical Hf0.5Zr0.5O2-based ferroelectric tunneling junction that meets the full functions of biological synapses. The fabricated three-dimensional vertical ferroelectric tunneling junction synapse (FTJS) exhibits high integration density and excellent performances, such as analog-like conductance transition under a training scheme, low energy consumption of synaptic weight update (1.8 pJ per spike) and good repeatability (&gt;103 cycles). In addition, the implementation of pattern training in hardware with strong tolerance to input faults and variations is also illustrated in the 3D vertical FTJS array. Furthermore, pattern classification and recognition are achieved, and these results demonstrate that the Hf0.5Zr0.5O2-based FTJS has high potential to be an ideal electronic component for neuromorphic system applications.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPg0AQRjdGY2v14g8wezahLrssLEfTWGtsbGLqxQsZliHSUiCzENJ_L221p_cd3szhMXbvi6kvVPxkTUUiiFSwvWBjKQLhKRXJy_MOgxG7cW4jRBirUF2zkRK-0EoGY9Z_lS2BV9Y9b-oeiS9yLqaaf9MRKy55Cg4zniNRjSXalgrL266qsOSbrrJtUVfc7StoHDqe18R_gLIeCHmFHUE5oO1r2nJomrKwcDhwt-wqh9Lh3R8nbD1_Wc8W3nL1-jZ7Xno2jgPPoDapDlEZNLmFaKDUOo1w2FEopLSR1ZBpKVIITaqs9mUIyqpcZzGAVBP2eHprqXaOME8aKnZA-8QXySFeMjMfn8d474P8cJKbLt1hdlb_a6lftGdq9w</recordid><startdate>20180814</startdate><enddate>20180814</enddate><creator>Chen, Lin</creator><creator>Wang, Tian-Yu</creator><creator>Dai, Ya-Wei</creator><creator>Cha, Ming-Yang</creator><creator>Zhu, Hao</creator><creator>Sun, Qing-Qing</creator><creator>Ding, Shi-Jin</creator><creator>Zhou, Peng</creator><creator>Chua, Leon</creator><creator>Zhang, David Wei</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7145-7564</orcidid></search><sort><creationdate>20180814</creationdate><title>Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications</title><author>Chen, Lin ; Wang, Tian-Yu ; Dai, Ya-Wei ; Cha, Ming-Yang ; Zhu, Hao ; Sun, Qing-Qing ; Ding, Shi-Jin ; Zhou, Peng ; Chua, Leon ; Zhang, David Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c994-8e58b56e38e8fca738e255b7eca776022c7c5ad520ba68b3c5126a3c3f5d9aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Tian-Yu</creatorcontrib><creatorcontrib>Dai, Ya-Wei</creatorcontrib><creatorcontrib>Cha, Ming-Yang</creatorcontrib><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Sun, Qing-Qing</creatorcontrib><creatorcontrib>Ding, Shi-Jin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Chua, Leon</creatorcontrib><creatorcontrib>Zhang, David Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lin</au><au>Wang, Tian-Yu</au><au>Dai, Ya-Wei</au><au>Cha, Ming-Yang</au><au>Zhu, Hao</au><au>Sun, Qing-Qing</au><au>Ding, Shi-Jin</au><au>Zhou, Peng</au><au>Chua, Leon</au><au>Zhang, David Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-08-14</date><risdate>2018</risdate><volume>10</volume><issue>33</issue><spage>15826</spage><epage>15833</epage><pages>15826-15833</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Brain-inspired neuromorphic computing has shown great promise beyond the conventional Boolean logic. Nanoscale electronic synapses, which have stringent demands for integration density, dynamic range, energy consumption, etc., are key computational elements of the brain-inspired neuromorphic system. Ferroelectric tunneling junctions have been shown to be ideal candidates to realize the functions of electronic synapses due to their ultra-low energy consumption and the nature of ferroelectric tunneling. Here, we report a new electronic synapse based on a three-dimensional vertical Hf0.5Zr0.5O2-based ferroelectric tunneling junction that meets the full functions of biological synapses. The fabricated three-dimensional vertical ferroelectric tunneling junction synapse (FTJS) exhibits high integration density and excellent performances, such as analog-like conductance transition under a training scheme, low energy consumption of synaptic weight update (1.8 pJ per spike) and good repeatability (&gt;103 cycles). In addition, the implementation of pattern training in hardware with strong tolerance to input faults and variations is also illustrated in the 3D vertical FTJS array. Furthermore, pattern classification and recognition are achieved, and these results demonstrate that the Hf0.5Zr0.5O2-based FTJS has high potential to be an ideal electronic component for neuromorphic system applications.</abstract><cop>England</cop><pmid>30105324</pmid><doi>10.1039/c8nr04734k</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7145-7564</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-08, Vol.10 (33), p.15826-15833
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_C8NR04734K
source Royal Society Of Chemistry Journals 2008-
title Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-low%20power%20Hf%200.5%20Zr%200.5%20O%202%20based%20ferroelectric%20tunnel%20junction%20synapses%20for%20hardware%20neural%20network%20applications&rft.jtitle=Nanoscale&rft.au=Chen,%20Lin&rft.date=2018-08-14&rft.volume=10&rft.issue=33&rft.spage=15826&rft.epage=15833&rft.pages=15826-15833&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr04734k&rft_dat=%3Cpubmed_cross%3E30105324%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30105324&rfr_iscdi=true