Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications
Brain-inspired neuromorphic computing has shown great promise beyond the conventional Boolean logic. Nanoscale electronic synapses, which have stringent demands for integration density, dynamic range, energy consumption, etc., are key computational elements of the brain-inspired neuromorphic system....
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-08, Vol.10 (33), p.15826-15833 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15833 |
---|---|
container_issue | 33 |
container_start_page | 15826 |
container_title | Nanoscale |
container_volume | 10 |
creator | Chen, Lin Wang, Tian-Yu Dai, Ya-Wei Cha, Ming-Yang Zhu, Hao Sun, Qing-Qing Ding, Shi-Jin Zhou, Peng Chua, Leon Zhang, David Wei |
description | Brain-inspired neuromorphic computing has shown great promise beyond the conventional Boolean logic. Nanoscale electronic synapses, which have stringent demands for integration density, dynamic range, energy consumption, etc., are key computational elements of the brain-inspired neuromorphic system. Ferroelectric tunneling junctions have been shown to be ideal candidates to realize the functions of electronic synapses due to their ultra-low energy consumption and the nature of ferroelectric tunneling. Here, we report a new electronic synapse based on a three-dimensional vertical Hf0.5Zr0.5O2-based ferroelectric tunneling junction that meets the full functions of biological synapses. The fabricated three-dimensional vertical ferroelectric tunneling junction synapse (FTJS) exhibits high integration density and excellent performances, such as analog-like conductance transition under a training scheme, low energy consumption of synaptic weight update (1.8 pJ per spike) and good repeatability (>103 cycles). In addition, the implementation of pattern training in hardware with strong tolerance to input faults and variations is also illustrated in the 3D vertical FTJS array. Furthermore, pattern classification and recognition are achieved, and these results demonstrate that the Hf0.5Zr0.5O2-based FTJS has high potential to be an ideal electronic component for neuromorphic system applications. |
doi_str_mv | 10.1039/c8nr04734k |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8NR04734K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30105324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c994-8e58b56e38e8fca738e255b7eca776022c7c5ad520ba68b3c5126a3c3f5d9aa23</originalsourceid><addsrcrecordid>eNo9kEFPg0AQRjdGY2v14g8wezahLrssLEfTWGtsbGLqxQsZliHSUiCzENJ_L221p_cd3szhMXbvi6kvVPxkTUUiiFSwvWBjKQLhKRXJy_MOgxG7cW4jRBirUF2zkRK-0EoGY9Z_lS2BV9Y9b-oeiS9yLqaaf9MRKy55Cg4zniNRjSXalgrL266qsOSbrrJtUVfc7StoHDqe18R_gLIeCHmFHUE5oO1r2nJomrKwcDhwt-wqh9Lh3R8nbD1_Wc8W3nL1-jZ7Xno2jgPPoDapDlEZNLmFaKDUOo1w2FEopLSR1ZBpKVIITaqs9mUIyqpcZzGAVBP2eHprqXaOME8aKnZA-8QXySFeMjMfn8d474P8cJKbLt1hdlb_a6lftGdq9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Lin ; Wang, Tian-Yu ; Dai, Ya-Wei ; Cha, Ming-Yang ; Zhu, Hao ; Sun, Qing-Qing ; Ding, Shi-Jin ; Zhou, Peng ; Chua, Leon ; Zhang, David Wei</creator><creatorcontrib>Chen, Lin ; Wang, Tian-Yu ; Dai, Ya-Wei ; Cha, Ming-Yang ; Zhu, Hao ; Sun, Qing-Qing ; Ding, Shi-Jin ; Zhou, Peng ; Chua, Leon ; Zhang, David Wei</creatorcontrib><description>Brain-inspired neuromorphic computing has shown great promise beyond the conventional Boolean logic. Nanoscale electronic synapses, which have stringent demands for integration density, dynamic range, energy consumption, etc., are key computational elements of the brain-inspired neuromorphic system. Ferroelectric tunneling junctions have been shown to be ideal candidates to realize the functions of electronic synapses due to their ultra-low energy consumption and the nature of ferroelectric tunneling. Here, we report a new electronic synapse based on a three-dimensional vertical Hf0.5Zr0.5O2-based ferroelectric tunneling junction that meets the full functions of biological synapses. The fabricated three-dimensional vertical ferroelectric tunneling junction synapse (FTJS) exhibits high integration density and excellent performances, such as analog-like conductance transition under a training scheme, low energy consumption of synaptic weight update (1.8 pJ per spike) and good repeatability (>103 cycles). In addition, the implementation of pattern training in hardware with strong tolerance to input faults and variations is also illustrated in the 3D vertical FTJS array. Furthermore, pattern classification and recognition are achieved, and these results demonstrate that the Hf0.5Zr0.5O2-based FTJS has high potential to be an ideal electronic component for neuromorphic system applications.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr04734k</identifier><identifier>PMID: 30105324</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanoscale, 2018-08, Vol.10 (33), p.15826-15833</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c994-8e58b56e38e8fca738e255b7eca776022c7c5ad520ba68b3c5126a3c3f5d9aa23</citedby><cites>FETCH-LOGICAL-c994-8e58b56e38e8fca738e255b7eca776022c7c5ad520ba68b3c5126a3c3f5d9aa23</cites><orcidid>0000-0002-7145-7564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30105324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Tian-Yu</creatorcontrib><creatorcontrib>Dai, Ya-Wei</creatorcontrib><creatorcontrib>Cha, Ming-Yang</creatorcontrib><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Sun, Qing-Qing</creatorcontrib><creatorcontrib>Ding, Shi-Jin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Chua, Leon</creatorcontrib><creatorcontrib>Zhang, David Wei</creatorcontrib><title>Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Brain-inspired neuromorphic computing has shown great promise beyond the conventional Boolean logic. Nanoscale electronic synapses, which have stringent demands for integration density, dynamic range, energy consumption, etc., are key computational elements of the brain-inspired neuromorphic system. Ferroelectric tunneling junctions have been shown to be ideal candidates to realize the functions of electronic synapses due to their ultra-low energy consumption and the nature of ferroelectric tunneling. Here, we report a new electronic synapse based on a three-dimensional vertical Hf0.5Zr0.5O2-based ferroelectric tunneling junction that meets the full functions of biological synapses. The fabricated three-dimensional vertical ferroelectric tunneling junction synapse (FTJS) exhibits high integration density and excellent performances, such as analog-like conductance transition under a training scheme, low energy consumption of synaptic weight update (1.8 pJ per spike) and good repeatability (>103 cycles). In addition, the implementation of pattern training in hardware with strong tolerance to input faults and variations is also illustrated in the 3D vertical FTJS array. Furthermore, pattern classification and recognition are achieved, and these results demonstrate that the Hf0.5Zr0.5O2-based FTJS has high potential to be an ideal electronic component for neuromorphic system applications.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPg0AQRjdGY2v14g8wezahLrssLEfTWGtsbGLqxQsZliHSUiCzENJ_L221p_cd3szhMXbvi6kvVPxkTUUiiFSwvWBjKQLhKRXJy_MOgxG7cW4jRBirUF2zkRK-0EoGY9Z_lS2BV9Y9b-oeiS9yLqaaf9MRKy55Cg4zniNRjSXalgrL266qsOSbrrJtUVfc7StoHDqe18R_gLIeCHmFHUE5oO1r2nJomrKwcDhwt-wqh9Lh3R8nbD1_Wc8W3nL1-jZ7Xno2jgPPoDapDlEZNLmFaKDUOo1w2FEopLSR1ZBpKVIITaqs9mUIyqpcZzGAVBP2eHprqXaOME8aKnZA-8QXySFeMjMfn8d474P8cJKbLt1hdlb_a6lftGdq9w</recordid><startdate>20180814</startdate><enddate>20180814</enddate><creator>Chen, Lin</creator><creator>Wang, Tian-Yu</creator><creator>Dai, Ya-Wei</creator><creator>Cha, Ming-Yang</creator><creator>Zhu, Hao</creator><creator>Sun, Qing-Qing</creator><creator>Ding, Shi-Jin</creator><creator>Zhou, Peng</creator><creator>Chua, Leon</creator><creator>Zhang, David Wei</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7145-7564</orcidid></search><sort><creationdate>20180814</creationdate><title>Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications</title><author>Chen, Lin ; Wang, Tian-Yu ; Dai, Ya-Wei ; Cha, Ming-Yang ; Zhu, Hao ; Sun, Qing-Qing ; Ding, Shi-Jin ; Zhou, Peng ; Chua, Leon ; Zhang, David Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c994-8e58b56e38e8fca738e255b7eca776022c7c5ad520ba68b3c5126a3c3f5d9aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Tian-Yu</creatorcontrib><creatorcontrib>Dai, Ya-Wei</creatorcontrib><creatorcontrib>Cha, Ming-Yang</creatorcontrib><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Sun, Qing-Qing</creatorcontrib><creatorcontrib>Ding, Shi-Jin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Chua, Leon</creatorcontrib><creatorcontrib>Zhang, David Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lin</au><au>Wang, Tian-Yu</au><au>Dai, Ya-Wei</au><au>Cha, Ming-Yang</au><au>Zhu, Hao</au><au>Sun, Qing-Qing</au><au>Ding, Shi-Jin</au><au>Zhou, Peng</au><au>Chua, Leon</au><au>Zhang, David Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-08-14</date><risdate>2018</risdate><volume>10</volume><issue>33</issue><spage>15826</spage><epage>15833</epage><pages>15826-15833</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Brain-inspired neuromorphic computing has shown great promise beyond the conventional Boolean logic. Nanoscale electronic synapses, which have stringent demands for integration density, dynamic range, energy consumption, etc., are key computational elements of the brain-inspired neuromorphic system. Ferroelectric tunneling junctions have been shown to be ideal candidates to realize the functions of electronic synapses due to their ultra-low energy consumption and the nature of ferroelectric tunneling. Here, we report a new electronic synapse based on a three-dimensional vertical Hf0.5Zr0.5O2-based ferroelectric tunneling junction that meets the full functions of biological synapses. The fabricated three-dimensional vertical ferroelectric tunneling junction synapse (FTJS) exhibits high integration density and excellent performances, such as analog-like conductance transition under a training scheme, low energy consumption of synaptic weight update (1.8 pJ per spike) and good repeatability (>103 cycles). In addition, the implementation of pattern training in hardware with strong tolerance to input faults and variations is also illustrated in the 3D vertical FTJS array. Furthermore, pattern classification and recognition are achieved, and these results demonstrate that the Hf0.5Zr0.5O2-based FTJS has high potential to be an ideal electronic component for neuromorphic system applications.</abstract><cop>England</cop><pmid>30105324</pmid><doi>10.1039/c8nr04734k</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7145-7564</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2018-08, Vol.10 (33), p.15826-15833 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C8NR04734K |
source | Royal Society Of Chemistry Journals 2008- |
title | Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-low%20power%20Hf%200.5%20Zr%200.5%20O%202%20based%20ferroelectric%20tunnel%20junction%20synapses%20for%20hardware%20neural%20network%20applications&rft.jtitle=Nanoscale&rft.au=Chen,%20Lin&rft.date=2018-08-14&rft.volume=10&rft.issue=33&rft.spage=15826&rft.epage=15833&rft.pages=15826-15833&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr04734k&rft_dat=%3Cpubmed_cross%3E30105324%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30105324&rfr_iscdi=true |