Metal-agglomeration-suppressed growth of MoS 2 and MoSe 2 films with small sulfur and selenium molecules for high mobility field effect transistor applications
This work reports a breakthrough technique for achieving high quality and uniform molybdenum dichalcogenide (MoX2 where X = S, Se) films on large-area wafers via metal-agglomeration-suppressed growth (MASG) with small chalcogen (X-) molecules at growth temperatures (TG) of 600 °C or lower. In order...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-08, Vol.10 (32), p.15213-15221 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15221 |
---|---|
container_issue | 32 |
container_start_page | 15213 |
container_title | Nanoscale |
container_volume | 10 |
creator | Jung, Kwang Hoon Yun, Sun Jin Choi, Yongsuk Cho, Jeong Ho Lim, Jung Wook Chai, Hyun-Jun Cho, Dae-Hyung Chung, Yong-Duck Kim, Gayoung |
description | This work reports a breakthrough technique for achieving high quality and uniform molybdenum dichalcogenide (MoX2 where X = S, Se) films on large-area wafers via metal-agglomeration-suppressed growth (MASG) with small chalcogen (X-) molecules at growth temperatures (TG) of 600 °C or lower. In order to grow MoS2 films suitable for field effect transistors (FETs), S-molecules should be pre-deposited on Mo films at 60 °C prior to heating the substrate up to TG. The pre-deposited S-molecules successfully suppressed the agglomeration of Mo during sulfurization and prevented the formation of protruding islands in the resultant sulfide films. The small X-molecules supplied from a thermal cracker reacted with Mo-precursor film to form MoX2. The film quality strongly depends on the temperatures of cracking and reservoir zones, as well as TG. The MoS2 film grown at 570 °C showed a thickness variation of less than 3.3% on a 6 inch-wafer. The mobility and on/off current ratio of 6.1 nm-MoS2 FET at TG = 570 °C were 59.8 cm2 V-1 s-1 and 105, respectively. The most significant advantages of the MASG method proposed in this work are its expandability to various metal dichalcogenides on larger substrates as well as a lower TG enabled by using reactive small molecules supplied from a cracker, for which temperature is independently controlled. |
doi_str_mv | 10.1039/c8nr03778g |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8NR03778G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30062340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c990-23b7e52ca95af83a32f960f41d1d82917b3b79164991c7a604f92b6548fe9fd13</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk5v_AGSa6Gaj65tLmXoFDYF3f1I05MukjYlaRn7Nf5Vs013dR7OeXg5vAjdUvJACRePqmg94Xle1GdozEhKEs5zdn7iLB2hqxC-CckEz_glGvGIjKdkjH6W0EubyLq2rgEve-PaJAxd5yEEqHDt3bbfYKfx0n1hhmVb7QkiamObgLcmnkMjrcVhsHrwByWAhdYMDW6cBTVYCFg7jzem3sRVaazpdzEAbIVBa1A97r1sgwl9tGTXWaMOr4RrdKGlDXDzNydo9fK8mr0mi4_52-xpkSghSMJ4mcOUKSmmUhdccqZFRnRKK1oVTNC8jIKgWSoEVbnMSKoFK7NpWmgQuqJ8gu6Pscq7EDzodedNI_1uTcl6X_J6Vrx_HkqeR_nuKHdD2UB1Uv9b5b_IEnqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metal-agglomeration-suppressed growth of MoS 2 and MoSe 2 films with small sulfur and selenium molecules for high mobility field effect transistor applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Jung, Kwang Hoon ; Yun, Sun Jin ; Choi, Yongsuk ; Cho, Jeong Ho ; Lim, Jung Wook ; Chai, Hyun-Jun ; Cho, Dae-Hyung ; Chung, Yong-Duck ; Kim, Gayoung</creator><creatorcontrib>Jung, Kwang Hoon ; Yun, Sun Jin ; Choi, Yongsuk ; Cho, Jeong Ho ; Lim, Jung Wook ; Chai, Hyun-Jun ; Cho, Dae-Hyung ; Chung, Yong-Duck ; Kim, Gayoung</creatorcontrib><description>This work reports a breakthrough technique for achieving high quality and uniform molybdenum dichalcogenide (MoX2 where X = S, Se) films on large-area wafers via metal-agglomeration-suppressed growth (MASG) with small chalcogen (X-) molecules at growth temperatures (TG) of 600 °C or lower. In order to grow MoS2 films suitable for field effect transistors (FETs), S-molecules should be pre-deposited on Mo films at 60 °C prior to heating the substrate up to TG. The pre-deposited S-molecules successfully suppressed the agglomeration of Mo during sulfurization and prevented the formation of protruding islands in the resultant sulfide films. The small X-molecules supplied from a thermal cracker reacted with Mo-precursor film to form MoX2. The film quality strongly depends on the temperatures of cracking and reservoir zones, as well as TG. The MoS2 film grown at 570 °C showed a thickness variation of less than 3.3% on a 6 inch-wafer. The mobility and on/off current ratio of 6.1 nm-MoS2 FET at TG = 570 °C were 59.8 cm2 V-1 s-1 and 105, respectively. The most significant advantages of the MASG method proposed in this work are its expandability to various metal dichalcogenides on larger substrates as well as a lower TG enabled by using reactive small molecules supplied from a cracker, for which temperature is independently controlled.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr03778g</identifier><identifier>PMID: 30062340</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanoscale, 2018-08, Vol.10 (32), p.15213-15221</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c990-23b7e52ca95af83a32f960f41d1d82917b3b79164991c7a604f92b6548fe9fd13</citedby><cites>FETCH-LOGICAL-c990-23b7e52ca95af83a32f960f41d1d82917b3b79164991c7a604f92b6548fe9fd13</cites><orcidid>0000-0002-2200-6994 ; 0000-0002-3665-0393 ; 0000-0001-8194-4270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30062340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Kwang Hoon</creatorcontrib><creatorcontrib>Yun, Sun Jin</creatorcontrib><creatorcontrib>Choi, Yongsuk</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Lim, Jung Wook</creatorcontrib><creatorcontrib>Chai, Hyun-Jun</creatorcontrib><creatorcontrib>Cho, Dae-Hyung</creatorcontrib><creatorcontrib>Chung, Yong-Duck</creatorcontrib><creatorcontrib>Kim, Gayoung</creatorcontrib><title>Metal-agglomeration-suppressed growth of MoS 2 and MoSe 2 films with small sulfur and selenium molecules for high mobility field effect transistor applications</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>This work reports a breakthrough technique for achieving high quality and uniform molybdenum dichalcogenide (MoX2 where X = S, Se) films on large-area wafers via metal-agglomeration-suppressed growth (MASG) with small chalcogen (X-) molecules at growth temperatures (TG) of 600 °C or lower. In order to grow MoS2 films suitable for field effect transistors (FETs), S-molecules should be pre-deposited on Mo films at 60 °C prior to heating the substrate up to TG. The pre-deposited S-molecules successfully suppressed the agglomeration of Mo during sulfurization and prevented the formation of protruding islands in the resultant sulfide films. The small X-molecules supplied from a thermal cracker reacted with Mo-precursor film to form MoX2. The film quality strongly depends on the temperatures of cracking and reservoir zones, as well as TG. The MoS2 film grown at 570 °C showed a thickness variation of less than 3.3% on a 6 inch-wafer. The mobility and on/off current ratio of 6.1 nm-MoS2 FET at TG = 570 °C were 59.8 cm2 V-1 s-1 and 105, respectively. The most significant advantages of the MASG method proposed in this work are its expandability to various metal dichalcogenides on larger substrates as well as a lower TG enabled by using reactive small molecules supplied from a cracker, for which temperature is independently controlled.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobk5v_AGSa6Gaj65tLmXoFDYF3f1I05MukjYlaRn7Nf5Vs013dR7OeXg5vAjdUvJACRePqmg94Xle1GdozEhKEs5zdn7iLB2hqxC-CckEz_glGvGIjKdkjH6W0EubyLq2rgEve-PaJAxd5yEEqHDt3bbfYKfx0n1hhmVb7QkiamObgLcmnkMjrcVhsHrwByWAhdYMDW6cBTVYCFg7jzem3sRVaazpdzEAbIVBa1A97r1sgwl9tGTXWaMOr4RrdKGlDXDzNydo9fK8mr0mi4_52-xpkSghSMJ4mcOUKSmmUhdccqZFRnRKK1oVTNC8jIKgWSoEVbnMSKoFK7NpWmgQuqJ8gu6Pscq7EDzodedNI_1uTcl6X_J6Vrx_HkqeR_nuKHdD2UB1Uv9b5b_IEnqE</recordid><startdate>20180816</startdate><enddate>20180816</enddate><creator>Jung, Kwang Hoon</creator><creator>Yun, Sun Jin</creator><creator>Choi, Yongsuk</creator><creator>Cho, Jeong Ho</creator><creator>Lim, Jung Wook</creator><creator>Chai, Hyun-Jun</creator><creator>Cho, Dae-Hyung</creator><creator>Chung, Yong-Duck</creator><creator>Kim, Gayoung</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2200-6994</orcidid><orcidid>https://orcid.org/0000-0002-3665-0393</orcidid><orcidid>https://orcid.org/0000-0001-8194-4270</orcidid></search><sort><creationdate>20180816</creationdate><title>Metal-agglomeration-suppressed growth of MoS 2 and MoSe 2 films with small sulfur and selenium molecules for high mobility field effect transistor applications</title><author>Jung, Kwang Hoon ; Yun, Sun Jin ; Choi, Yongsuk ; Cho, Jeong Ho ; Lim, Jung Wook ; Chai, Hyun-Jun ; Cho, Dae-Hyung ; Chung, Yong-Duck ; Kim, Gayoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c990-23b7e52ca95af83a32f960f41d1d82917b3b79164991c7a604f92b6548fe9fd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Kwang Hoon</creatorcontrib><creatorcontrib>Yun, Sun Jin</creatorcontrib><creatorcontrib>Choi, Yongsuk</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Lim, Jung Wook</creatorcontrib><creatorcontrib>Chai, Hyun-Jun</creatorcontrib><creatorcontrib>Cho, Dae-Hyung</creatorcontrib><creatorcontrib>Chung, Yong-Duck</creatorcontrib><creatorcontrib>Kim, Gayoung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Kwang Hoon</au><au>Yun, Sun Jin</au><au>Choi, Yongsuk</au><au>Cho, Jeong Ho</au><au>Lim, Jung Wook</au><au>Chai, Hyun-Jun</au><au>Cho, Dae-Hyung</au><au>Chung, Yong-Duck</au><au>Kim, Gayoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-agglomeration-suppressed growth of MoS 2 and MoSe 2 films with small sulfur and selenium molecules for high mobility field effect transistor applications</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-08-16</date><risdate>2018</risdate><volume>10</volume><issue>32</issue><spage>15213</spage><epage>15221</epage><pages>15213-15221</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>This work reports a breakthrough technique for achieving high quality and uniform molybdenum dichalcogenide (MoX2 where X = S, Se) films on large-area wafers via metal-agglomeration-suppressed growth (MASG) with small chalcogen (X-) molecules at growth temperatures (TG) of 600 °C or lower. In order to grow MoS2 films suitable for field effect transistors (FETs), S-molecules should be pre-deposited on Mo films at 60 °C prior to heating the substrate up to TG. The pre-deposited S-molecules successfully suppressed the agglomeration of Mo during sulfurization and prevented the formation of protruding islands in the resultant sulfide films. The small X-molecules supplied from a thermal cracker reacted with Mo-precursor film to form MoX2. The film quality strongly depends on the temperatures of cracking and reservoir zones, as well as TG. The MoS2 film grown at 570 °C showed a thickness variation of less than 3.3% on a 6 inch-wafer. The mobility and on/off current ratio of 6.1 nm-MoS2 FET at TG = 570 °C were 59.8 cm2 V-1 s-1 and 105, respectively. The most significant advantages of the MASG method proposed in this work are its expandability to various metal dichalcogenides on larger substrates as well as a lower TG enabled by using reactive small molecules supplied from a cracker, for which temperature is independently controlled.</abstract><cop>England</cop><pmid>30062340</pmid><doi>10.1039/c8nr03778g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2200-6994</orcidid><orcidid>https://orcid.org/0000-0002-3665-0393</orcidid><orcidid>https://orcid.org/0000-0001-8194-4270</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2018-08, Vol.10 (32), p.15213-15221 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C8NR03778G |
source | Royal Society Of Chemistry Journals 2008- |
title | Metal-agglomeration-suppressed growth of MoS 2 and MoSe 2 films with small sulfur and selenium molecules for high mobility field effect transistor applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-agglomeration-suppressed%20growth%20of%20MoS%202%20and%20MoSe%202%20films%20with%20small%20sulfur%20and%20selenium%20molecules%20for%20high%20mobility%20field%20effect%20transistor%20applications&rft.jtitle=Nanoscale&rft.au=Jung,%20Kwang%20Hoon&rft.date=2018-08-16&rft.volume=10&rft.issue=32&rft.spage=15213&rft.epage=15221&rft.pages=15213-15221&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr03778g&rft_dat=%3Cpubmed_cross%3E30062340%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30062340&rfr_iscdi=true |