Neural network force fields for simple metals and semiconductors: construction and application to the calculation of phonons and melting temperatures

We present a practical procedure to obtain reliable and unbiased neural network based force fields for solids. Training and test sets are efficiently generated from global structural prediction runs, at the same time assuring the structural variety and importance of sampling the relevant regions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019-03, Vol.21 (12), p.656-6516
Hauptverfasser: Marques, Mário R. G, Wolff, Jakob, Steigemann, Conrad, Marques, Miguel A. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6516
container_issue 12
container_start_page 656
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Marques, Mário R. G
Wolff, Jakob
Steigemann, Conrad
Marques, Miguel A. L
description We present a practical procedure to obtain reliable and unbiased neural network based force fields for solids. Training and test sets are efficiently generated from global structural prediction runs, at the same time assuring the structural variety and importance of sampling the relevant regions of phase space. The neural networks are trained to yield not only good formation energies, but also accurate forces and stresses, which are the quantities of interest for molecular dynamics simulations. Finally, we construct, as an example, several force fields for both semiconducting and metallic elements, and prove their accuracy for a variety of structural and dynamical properties. These are then used to study the melting of bulk copper and gold. We present a practical procedure to obtain reliable and unbiased neural network based force fields for solids.
doi_str_mv 10.1039/c8cp05771k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8CP05771K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188985485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-d437a9ebe940071608eec4b65c79d58a047f91ee93dccdcd2681b6af08aa2eb73</originalsourceid><addsrcrecordid>eNpdkUFP3DAQhS1UBJRy4d7KUi-o0lJ77cR2b9WKlgpEe2jPkTOelIATB9tR1R_C_8W7C1upJ8_zfH4ezSPklLNzzoT5CBomVinF7_fIEZe1WBim5atdrepD8jqlO8YYr7g4IIei9EUl9RF5vME5Wk9HzH9CvKddiIC069G7tBY09cPkkQ6YrU_Ujo4mHHoIo5shh5g-0VKnHIvqw7gB7DT5HuxG50DzLVKwHma_vQodnW7DWF5t6AF97sffNOMwYbR5jpjekP2ufIcnz-cx-fXl4ufqcnH9_eu31efrBUjJ8sJJoazBFo1kTPGaaUSQbV2BMq7SlknVGY5ohANw4Ja15m1tO6atXWKrxDE52_pOMTzMmHIz9AnQeztimFOz5FobXRZVFfT9f-hdmONYpiuUkVwqtVxTH7YUxJBSxK6ZYj_Y-LfhrFmH1az06scmrKsCv3u2nNsB3Q59SacAb7dATLDr_ktbPAH6J50h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194147725</pqid></control><display><type>article</type><title>Neural network force fields for simple metals and semiconductors: construction and application to the calculation of phonons and melting temperatures</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Marques, Mário R. G ; Wolff, Jakob ; Steigemann, Conrad ; Marques, Miguel A. L</creator><creatorcontrib>Marques, Mário R. G ; Wolff, Jakob ; Steigemann, Conrad ; Marques, Miguel A. L</creatorcontrib><description>We present a practical procedure to obtain reliable and unbiased neural network based force fields for solids. Training and test sets are efficiently generated from global structural prediction runs, at the same time assuring the structural variety and importance of sampling the relevant regions of phase space. The neural networks are trained to yield not only good formation energies, but also accurate forces and stresses, which are the quantities of interest for molecular dynamics simulations. Finally, we construct, as an example, several force fields for both semiconducting and metallic elements, and prove their accuracy for a variety of structural and dynamical properties. These are then used to study the melting of bulk copper and gold. We present a practical procedure to obtain reliable and unbiased neural network based force fields for solids.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp05771k</identifier><identifier>PMID: 30843548</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Computer simulation ; Construction ; Free energy ; Gold ; Heat of formation ; Molecular dynamics ; Neural networks ; Test sets</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019-03, Vol.21 (12), p.656-6516</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-d437a9ebe940071608eec4b65c79d58a047f91ee93dccdcd2681b6af08aa2eb73</citedby><cites>FETCH-LOGICAL-c440t-d437a9ebe940071608eec4b65c79d58a047f91ee93dccdcd2681b6af08aa2eb73</cites><orcidid>0000-0002-7420-5098 ; 0000-0003-1420-4840 ; 0000-0002-3923-4475 ; 0000-0003-0170-8222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30843548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marques, Mário R. G</creatorcontrib><creatorcontrib>Wolff, Jakob</creatorcontrib><creatorcontrib>Steigemann, Conrad</creatorcontrib><creatorcontrib>Marques, Miguel A. L</creatorcontrib><title>Neural network force fields for simple metals and semiconductors: construction and application to the calculation of phonons and melting temperatures</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We present a practical procedure to obtain reliable and unbiased neural network based force fields for solids. Training and test sets are efficiently generated from global structural prediction runs, at the same time assuring the structural variety and importance of sampling the relevant regions of phase space. The neural networks are trained to yield not only good formation energies, but also accurate forces and stresses, which are the quantities of interest for molecular dynamics simulations. Finally, we construct, as an example, several force fields for both semiconducting and metallic elements, and prove their accuracy for a variety of structural and dynamical properties. These are then used to study the melting of bulk copper and gold. We present a practical procedure to obtain reliable and unbiased neural network based force fields for solids.</description><subject>Computer simulation</subject><subject>Construction</subject><subject>Free energy</subject><subject>Gold</subject><subject>Heat of formation</subject><subject>Molecular dynamics</subject><subject>Neural networks</subject><subject>Test sets</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkUFP3DAQhS1UBJRy4d7KUi-o0lJ77cR2b9WKlgpEe2jPkTOelIATB9tR1R_C_8W7C1upJ8_zfH4ezSPklLNzzoT5CBomVinF7_fIEZe1WBim5atdrepD8jqlO8YYr7g4IIei9EUl9RF5vME5Wk9HzH9CvKddiIC069G7tBY09cPkkQ6YrU_Ujo4mHHoIo5shh5g-0VKnHIvqw7gB7DT5HuxG50DzLVKwHma_vQodnW7DWF5t6AF97sffNOMwYbR5jpjekP2ufIcnz-cx-fXl4ufqcnH9_eu31efrBUjJ8sJJoazBFo1kTPGaaUSQbV2BMq7SlknVGY5ohANw4Ja15m1tO6atXWKrxDE52_pOMTzMmHIz9AnQeztimFOz5FobXRZVFfT9f-hdmONYpiuUkVwqtVxTH7YUxJBSxK6ZYj_Y-LfhrFmH1az06scmrKsCv3u2nNsB3Q59SacAb7dATLDr_ktbPAH6J50h</recordid><startdate>20190320</startdate><enddate>20190320</enddate><creator>Marques, Mário R. G</creator><creator>Wolff, Jakob</creator><creator>Steigemann, Conrad</creator><creator>Marques, Miguel A. L</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7420-5098</orcidid><orcidid>https://orcid.org/0000-0003-1420-4840</orcidid><orcidid>https://orcid.org/0000-0002-3923-4475</orcidid><orcidid>https://orcid.org/0000-0003-0170-8222</orcidid></search><sort><creationdate>20190320</creationdate><title>Neural network force fields for simple metals and semiconductors: construction and application to the calculation of phonons and melting temperatures</title><author>Marques, Mário R. G ; Wolff, Jakob ; Steigemann, Conrad ; Marques, Miguel A. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-d437a9ebe940071608eec4b65c79d58a047f91ee93dccdcd2681b6af08aa2eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Construction</topic><topic>Free energy</topic><topic>Gold</topic><topic>Heat of formation</topic><topic>Molecular dynamics</topic><topic>Neural networks</topic><topic>Test sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marques, Mário R. G</creatorcontrib><creatorcontrib>Wolff, Jakob</creatorcontrib><creatorcontrib>Steigemann, Conrad</creatorcontrib><creatorcontrib>Marques, Miguel A. L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marques, Mário R. G</au><au>Wolff, Jakob</au><au>Steigemann, Conrad</au><au>Marques, Miguel A. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network force fields for simple metals and semiconductors: construction and application to the calculation of phonons and melting temperatures</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2019-03-20</date><risdate>2019</risdate><volume>21</volume><issue>12</issue><spage>656</spage><epage>6516</epage><pages>656-6516</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We present a practical procedure to obtain reliable and unbiased neural network based force fields for solids. Training and test sets are efficiently generated from global structural prediction runs, at the same time assuring the structural variety and importance of sampling the relevant regions of phase space. The neural networks are trained to yield not only good formation energies, but also accurate forces and stresses, which are the quantities of interest for molecular dynamics simulations. Finally, we construct, as an example, several force fields for both semiconducting and metallic elements, and prove their accuracy for a variety of structural and dynamical properties. These are then used to study the melting of bulk copper and gold. We present a practical procedure to obtain reliable and unbiased neural network based force fields for solids.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30843548</pmid><doi>10.1039/c8cp05771k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7420-5098</orcidid><orcidid>https://orcid.org/0000-0003-1420-4840</orcidid><orcidid>https://orcid.org/0000-0002-3923-4475</orcidid><orcidid>https://orcid.org/0000-0003-0170-8222</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019-03, Vol.21 (12), p.656-6516
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_C8CP05771K
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Computer simulation
Construction
Free energy
Gold
Heat of formation
Molecular dynamics
Neural networks
Test sets
title Neural network force fields for simple metals and semiconductors: construction and application to the calculation of phonons and melting temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20force%20fields%20for%20simple%20metals%20and%20semiconductors:%20construction%20and%20application%20to%20the%20calculation%20of%20phonons%20and%20melting%20temperatures&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Marques,%20M%C3%A1rio%20R.%20G&rft.date=2019-03-20&rft.volume=21&rft.issue=12&rft.spage=656&rft.epage=6516&rft.pages=656-6516&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp05771k&rft_dat=%3Cproquest_cross%3E2188985485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194147725&rft_id=info:pmid/30843548&rfr_iscdi=true