Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2
The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans -to- cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state. By treating the chromophore at the ab initio multiconfiguration...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2018-11, Vol.2 (43), p.2751-2759 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2759 |
---|---|
container_issue | 43 |
container_start_page | 2751 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 2 |
creator | Guo, Yanan Wolff, Franziska E Schapiro, Igor Elstner, Marcus Marazzi, Marco |
description | The first event of the channelrhodopsin-2 (ChR2) photocycle,
i.e. trans
-to-
cis
photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state. By treating the chromophore at the
ab initio
multiconfigurational level of theory, we can rationalize the experimental findings based on pump-probe spectroscopy, explaining the different and more complex scenario found for ChR2 in comparison to other rhodopsins. In particular, we find that depending on the hydrogen bonding pattern, different excited states are involved, hence making it possible to suggest one pattern as the most productive. Moreover, after photoisomerization the structure of the first photocycle intermediate, P
500
1
, is characterized by simulating the infrared spectrum and compared to available experimental data. This was obtained by extensive molecular dynamics, where the chromophore is described by a semi-empirical method based on density functional theory. The results clearly identify which counterion is responsible for accepting the proton from the retinal Schiff base: the side chain of the glutamic acid E123.
The first event of the channelrhodopsin-2 (ChR2) photocycle,
i.e. trans
-to-
cis
photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state. |
doi_str_mv | 10.1039/c8cp05210g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8CP05210G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126902287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-8dbead9f3dfedf18348882af8c379fb4f811a1eeaa8623bd99a2d3621c01c6623</originalsourceid><addsrcrecordid>eNpd0ctL7DAUBvAgiu-N-3sJuBGhmkenky4v4xMEBXVd0uRkGmmTmmQu6NK_3OjoCK4Scn585PAhdEDJCSW8PlVCjWTCKJmvoW1aVryoiSjXV_dptYV2YnwihNAJ5ZtoixNesbKebKO3M2sMBHAJdy86-Dk43HqnrZtjcP9t8G7Iw4i9wakDHCBZJ3s8Bp-8kwk0vlddzsCtjICVdyn4_pOOXSY2-gGCfZXJeoetw6qTzkEfOq_9GK0r2B7aMLKPsP917qLHi_OH2VVxc3t5Pft3U6iS8FQI3YLUteHagDZU8FIIwaQRik9r05ZGUCopgJSiYrzVdS2ZzmtSRaiq8tMuOlrm5r8_LyCmZrBRQd9LB34RG0ZZVRPGxDTTw1_0yS9C3vtDccKqikx4VsdLpYKPMYBpxmAHGV4aSpqPZpqZmN19NnOZ8d-vyEU7gF7R7yoy-LMEIarV9Kda_g7xqpW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130266053</pqid></control><display><type>article</type><title>Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Guo, Yanan ; Wolff, Franziska E ; Schapiro, Igor ; Elstner, Marcus ; Marazzi, Marco</creator><creatorcontrib>Guo, Yanan ; Wolff, Franziska E ; Schapiro, Igor ; Elstner, Marcus ; Marazzi, Marco</creatorcontrib><description>The first event of the channelrhodopsin-2 (ChR2) photocycle,
i.e. trans
-to-
cis
photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state. By treating the chromophore at the
ab initio
multiconfigurational level of theory, we can rationalize the experimental findings based on pump-probe spectroscopy, explaining the different and more complex scenario found for ChR2 in comparison to other rhodopsins. In particular, we find that depending on the hydrogen bonding pattern, different excited states are involved, hence making it possible to suggest one pattern as the most productive. Moreover, after photoisomerization the structure of the first photocycle intermediate, P
500
1
, is characterized by simulating the infrared spectrum and compared to available experimental data. This was obtained by extensive molecular dynamics, where the chromophore is described by a semi-empirical method based on density functional theory. The results clearly identify which counterion is responsible for accepting the proton from the retinal Schiff base: the side chain of the glutamic acid E123.
The first event of the channelrhodopsin-2 (ChR2) photocycle,
i.e. trans
-to-
cis
photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp05210g</identifier><identifier>PMID: 30362495</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Channelrhodopsins - chemistry ; Chromophores ; Computer simulation ; Density functional theory ; Glutamic acid ; Ground state ; Hydrogen Bonding ; Imines ; Infrared radiation ; Isomerism ; Models, Molecular ; Molecular dynamics ; Molecular orbitals ; Photochemistry ; Quantum mechanics ; Retina - chemistry ; Schiff Bases - chemistry ; Spectrum analysis</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018-11, Vol.2 (43), p.2751-2759</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-8dbead9f3dfedf18348882af8c379fb4f811a1eeaa8623bd99a2d3621c01c6623</citedby><cites>FETCH-LOGICAL-c403t-8dbead9f3dfedf18348882af8c379fb4f811a1eeaa8623bd99a2d3621c01c6623</cites><orcidid>0000-0001-7158-7994 ; 0000-0001-8536-6869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30362495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yanan</creatorcontrib><creatorcontrib>Wolff, Franziska E</creatorcontrib><creatorcontrib>Schapiro, Igor</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><creatorcontrib>Marazzi, Marco</creatorcontrib><title>Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The first event of the channelrhodopsin-2 (ChR2) photocycle,
i.e. trans
-to-
cis
photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state. By treating the chromophore at the
ab initio
multiconfigurational level of theory, we can rationalize the experimental findings based on pump-probe spectroscopy, explaining the different and more complex scenario found for ChR2 in comparison to other rhodopsins. In particular, we find that depending on the hydrogen bonding pattern, different excited states are involved, hence making it possible to suggest one pattern as the most productive. Moreover, after photoisomerization the structure of the first photocycle intermediate, P
500
1
, is characterized by simulating the infrared spectrum and compared to available experimental data. This was obtained by extensive molecular dynamics, where the chromophore is described by a semi-empirical method based on density functional theory. The results clearly identify which counterion is responsible for accepting the proton from the retinal Schiff base: the side chain of the glutamic acid E123.
The first event of the channelrhodopsin-2 (ChR2) photocycle,
i.e. trans
-to-
cis
photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.</description><subject>Animals</subject><subject>Channelrhodopsins - chemistry</subject><subject>Chromophores</subject><subject>Computer simulation</subject><subject>Density functional theory</subject><subject>Glutamic acid</subject><subject>Ground state</subject><subject>Hydrogen Bonding</subject><subject>Imines</subject><subject>Infrared radiation</subject><subject>Isomerism</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular orbitals</subject><subject>Photochemistry</subject><subject>Quantum mechanics</subject><subject>Retina - chemistry</subject><subject>Schiff Bases - chemistry</subject><subject>Spectrum analysis</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0ctL7DAUBvAgiu-N-3sJuBGhmkenky4v4xMEBXVd0uRkGmmTmmQu6NK_3OjoCK4Scn585PAhdEDJCSW8PlVCjWTCKJmvoW1aVryoiSjXV_dptYV2YnwihNAJ5ZtoixNesbKebKO3M2sMBHAJdy86-Dk43HqnrZtjcP9t8G7Iw4i9wakDHCBZJ3s8Bp-8kwk0vlddzsCtjICVdyn4_pOOXSY2-gGCfZXJeoetw6qTzkEfOq_9GK0r2B7aMLKPsP917qLHi_OH2VVxc3t5Pft3U6iS8FQI3YLUteHagDZU8FIIwaQRik9r05ZGUCopgJSiYrzVdS2ZzmtSRaiq8tMuOlrm5r8_LyCmZrBRQd9LB34RG0ZZVRPGxDTTw1_0yS9C3vtDccKqikx4VsdLpYKPMYBpxmAHGV4aSpqPZpqZmN19NnOZ8d-vyEU7gF7R7yoy-LMEIarV9Kda_g7xqpW4</recordid><startdate>20181107</startdate><enddate>20181107</enddate><creator>Guo, Yanan</creator><creator>Wolff, Franziska E</creator><creator>Schapiro, Igor</creator><creator>Elstner, Marcus</creator><creator>Marazzi, Marco</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7158-7994</orcidid><orcidid>https://orcid.org/0000-0001-8536-6869</orcidid></search><sort><creationdate>20181107</creationdate><title>Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2</title><author>Guo, Yanan ; Wolff, Franziska E ; Schapiro, Igor ; Elstner, Marcus ; Marazzi, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-8dbead9f3dfedf18348882af8c379fb4f811a1eeaa8623bd99a2d3621c01c6623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Channelrhodopsins - chemistry</topic><topic>Chromophores</topic><topic>Computer simulation</topic><topic>Density functional theory</topic><topic>Glutamic acid</topic><topic>Ground state</topic><topic>Hydrogen Bonding</topic><topic>Imines</topic><topic>Infrared radiation</topic><topic>Isomerism</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular orbitals</topic><topic>Photochemistry</topic><topic>Quantum mechanics</topic><topic>Retina - chemistry</topic><topic>Schiff Bases - chemistry</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yanan</creatorcontrib><creatorcontrib>Wolff, Franziska E</creatorcontrib><creatorcontrib>Schapiro, Igor</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><creatorcontrib>Marazzi, Marco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yanan</au><au>Wolff, Franziska E</au><au>Schapiro, Igor</au><au>Elstner, Marcus</au><au>Marazzi, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018-11-07</date><risdate>2018</risdate><volume>2</volume><issue>43</issue><spage>2751</spage><epage>2759</epage><pages>2751-2759</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The first event of the channelrhodopsin-2 (ChR2) photocycle,
i.e. trans
-to-
cis
photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state. By treating the chromophore at the
ab initio
multiconfigurational level of theory, we can rationalize the experimental findings based on pump-probe spectroscopy, explaining the different and more complex scenario found for ChR2 in comparison to other rhodopsins. In particular, we find that depending on the hydrogen bonding pattern, different excited states are involved, hence making it possible to suggest one pattern as the most productive. Moreover, after photoisomerization the structure of the first photocycle intermediate, P
500
1
, is characterized by simulating the infrared spectrum and compared to available experimental data. This was obtained by extensive molecular dynamics, where the chromophore is described by a semi-empirical method based on density functional theory. The results clearly identify which counterion is responsible for accepting the proton from the retinal Schiff base: the side chain of the glutamic acid E123.
The first event of the channelrhodopsin-2 (ChR2) photocycle,
i.e. trans
-to-
cis
photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30362495</pmid><doi>10.1039/c8cp05210g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7158-7994</orcidid><orcidid>https://orcid.org/0000-0001-8536-6869</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2018-11, Vol.2 (43), p.2751-2759 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C8CP05210G |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Animals Channelrhodopsins - chemistry Chromophores Computer simulation Density functional theory Glutamic acid Ground state Hydrogen Bonding Imines Infrared radiation Isomerism Models, Molecular Molecular dynamics Molecular orbitals Photochemistry Quantum mechanics Retina - chemistry Schiff Bases - chemistry Spectrum analysis |
title | Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20hydrogen%20bonding%20environments%20of%20the%20retinal%20protonated%20Schiff%20base%20control%20the%20photoisomerization%20in%20channelrhodopsin-2&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Guo,%20Yanan&rft.date=2018-11-07&rft.volume=2&rft.issue=43&rft.spage=2751&rft.epage=2759&rft.pages=2751-2759&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp05210g&rft_dat=%3Cproquest_cross%3E2126902287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130266053&rft_id=info:pmid/30362495&rfr_iscdi=true |