Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2

The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans -to- cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state. By treating the chromophore at the ab initio multiconfiguration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018-11, Vol.2 (43), p.2751-2759
Hauptverfasser: Guo, Yanan, Wolff, Franziska E, Schapiro, Igor, Elstner, Marcus, Marazzi, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2759
container_issue 43
container_start_page 2751
container_title Physical chemistry chemical physics : PCCP
container_volume 2
creator Guo, Yanan
Wolff, Franziska E
Schapiro, Igor
Elstner, Marcus
Marazzi, Marco
description The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans -to- cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state. By treating the chromophore at the ab initio multiconfigurational level of theory, we can rationalize the experimental findings based on pump-probe spectroscopy, explaining the different and more complex scenario found for ChR2 in comparison to other rhodopsins. In particular, we find that depending on the hydrogen bonding pattern, different excited states are involved, hence making it possible to suggest one pattern as the most productive. Moreover, after photoisomerization the structure of the first photocycle intermediate, P 500 1 , is characterized by simulating the infrared spectrum and compared to available experimental data. This was obtained by extensive molecular dynamics, where the chromophore is described by a semi-empirical method based on density functional theory. The results clearly identify which counterion is responsible for accepting the proton from the retinal Schiff base: the side chain of the glutamic acid E123. The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans -to- cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.
doi_str_mv 10.1039/c8cp05210g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8CP05210G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126902287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-8dbead9f3dfedf18348882af8c379fb4f811a1eeaa8623bd99a2d3621c01c6623</originalsourceid><addsrcrecordid>eNpd0ctL7DAUBvAgiu-N-3sJuBGhmkenky4v4xMEBXVd0uRkGmmTmmQu6NK_3OjoCK4Scn585PAhdEDJCSW8PlVCjWTCKJmvoW1aVryoiSjXV_dptYV2YnwihNAJ5ZtoixNesbKebKO3M2sMBHAJdy86-Dk43HqnrZtjcP9t8G7Iw4i9wakDHCBZJ3s8Bp-8kwk0vlddzsCtjICVdyn4_pOOXSY2-gGCfZXJeoetw6qTzkEfOq_9GK0r2B7aMLKPsP917qLHi_OH2VVxc3t5Pft3U6iS8FQI3YLUteHagDZU8FIIwaQRik9r05ZGUCopgJSiYrzVdS2ZzmtSRaiq8tMuOlrm5r8_LyCmZrBRQd9LB34RG0ZZVRPGxDTTw1_0yS9C3vtDccKqikx4VsdLpYKPMYBpxmAHGV4aSpqPZpqZmN19NnOZ8d-vyEU7gF7R7yoy-LMEIarV9Kda_g7xqpW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130266053</pqid></control><display><type>article</type><title>Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Guo, Yanan ; Wolff, Franziska E ; Schapiro, Igor ; Elstner, Marcus ; Marazzi, Marco</creator><creatorcontrib>Guo, Yanan ; Wolff, Franziska E ; Schapiro, Igor ; Elstner, Marcus ; Marazzi, Marco</creatorcontrib><description>The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans -to- cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state. By treating the chromophore at the ab initio multiconfigurational level of theory, we can rationalize the experimental findings based on pump-probe spectroscopy, explaining the different and more complex scenario found for ChR2 in comparison to other rhodopsins. In particular, we find that depending on the hydrogen bonding pattern, different excited states are involved, hence making it possible to suggest one pattern as the most productive. Moreover, after photoisomerization the structure of the first photocycle intermediate, P 500 1 , is characterized by simulating the infrared spectrum and compared to available experimental data. This was obtained by extensive molecular dynamics, where the chromophore is described by a semi-empirical method based on density functional theory. The results clearly identify which counterion is responsible for accepting the proton from the retinal Schiff base: the side chain of the glutamic acid E123. The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans -to- cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp05210g</identifier><identifier>PMID: 30362495</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Channelrhodopsins - chemistry ; Chromophores ; Computer simulation ; Density functional theory ; Glutamic acid ; Ground state ; Hydrogen Bonding ; Imines ; Infrared radiation ; Isomerism ; Models, Molecular ; Molecular dynamics ; Molecular orbitals ; Photochemistry ; Quantum mechanics ; Retina - chemistry ; Schiff Bases - chemistry ; Spectrum analysis</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018-11, Vol.2 (43), p.2751-2759</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-8dbead9f3dfedf18348882af8c379fb4f811a1eeaa8623bd99a2d3621c01c6623</citedby><cites>FETCH-LOGICAL-c403t-8dbead9f3dfedf18348882af8c379fb4f811a1eeaa8623bd99a2d3621c01c6623</cites><orcidid>0000-0001-7158-7994 ; 0000-0001-8536-6869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30362495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yanan</creatorcontrib><creatorcontrib>Wolff, Franziska E</creatorcontrib><creatorcontrib>Schapiro, Igor</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><creatorcontrib>Marazzi, Marco</creatorcontrib><title>Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans -to- cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state. By treating the chromophore at the ab initio multiconfigurational level of theory, we can rationalize the experimental findings based on pump-probe spectroscopy, explaining the different and more complex scenario found for ChR2 in comparison to other rhodopsins. In particular, we find that depending on the hydrogen bonding pattern, different excited states are involved, hence making it possible to suggest one pattern as the most productive. Moreover, after photoisomerization the structure of the first photocycle intermediate, P 500 1 , is characterized by simulating the infrared spectrum and compared to available experimental data. This was obtained by extensive molecular dynamics, where the chromophore is described by a semi-empirical method based on density functional theory. The results clearly identify which counterion is responsible for accepting the proton from the retinal Schiff base: the side chain of the glutamic acid E123. The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans -to- cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.</description><subject>Animals</subject><subject>Channelrhodopsins - chemistry</subject><subject>Chromophores</subject><subject>Computer simulation</subject><subject>Density functional theory</subject><subject>Glutamic acid</subject><subject>Ground state</subject><subject>Hydrogen Bonding</subject><subject>Imines</subject><subject>Infrared radiation</subject><subject>Isomerism</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular orbitals</subject><subject>Photochemistry</subject><subject>Quantum mechanics</subject><subject>Retina - chemistry</subject><subject>Schiff Bases - chemistry</subject><subject>Spectrum analysis</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0ctL7DAUBvAgiu-N-3sJuBGhmkenky4v4xMEBXVd0uRkGmmTmmQu6NK_3OjoCK4Scn585PAhdEDJCSW8PlVCjWTCKJmvoW1aVryoiSjXV_dptYV2YnwihNAJ5ZtoixNesbKebKO3M2sMBHAJdy86-Dk43HqnrZtjcP9t8G7Iw4i9wakDHCBZJ3s8Bp-8kwk0vlddzsCtjICVdyn4_pOOXSY2-gGCfZXJeoetw6qTzkEfOq_9GK0r2B7aMLKPsP917qLHi_OH2VVxc3t5Pft3U6iS8FQI3YLUteHagDZU8FIIwaQRik9r05ZGUCopgJSiYrzVdS2ZzmtSRaiq8tMuOlrm5r8_LyCmZrBRQd9LB34RG0ZZVRPGxDTTw1_0yS9C3vtDccKqikx4VsdLpYKPMYBpxmAHGV4aSpqPZpqZmN19NnOZ8d-vyEU7gF7R7yoy-LMEIarV9Kda_g7xqpW4</recordid><startdate>20181107</startdate><enddate>20181107</enddate><creator>Guo, Yanan</creator><creator>Wolff, Franziska E</creator><creator>Schapiro, Igor</creator><creator>Elstner, Marcus</creator><creator>Marazzi, Marco</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7158-7994</orcidid><orcidid>https://orcid.org/0000-0001-8536-6869</orcidid></search><sort><creationdate>20181107</creationdate><title>Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2</title><author>Guo, Yanan ; Wolff, Franziska E ; Schapiro, Igor ; Elstner, Marcus ; Marazzi, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-8dbead9f3dfedf18348882af8c379fb4f811a1eeaa8623bd99a2d3621c01c6623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Channelrhodopsins - chemistry</topic><topic>Chromophores</topic><topic>Computer simulation</topic><topic>Density functional theory</topic><topic>Glutamic acid</topic><topic>Ground state</topic><topic>Hydrogen Bonding</topic><topic>Imines</topic><topic>Infrared radiation</topic><topic>Isomerism</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular orbitals</topic><topic>Photochemistry</topic><topic>Quantum mechanics</topic><topic>Retina - chemistry</topic><topic>Schiff Bases - chemistry</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yanan</creatorcontrib><creatorcontrib>Wolff, Franziska E</creatorcontrib><creatorcontrib>Schapiro, Igor</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><creatorcontrib>Marazzi, Marco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yanan</au><au>Wolff, Franziska E</au><au>Schapiro, Igor</au><au>Elstner, Marcus</au><au>Marazzi, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018-11-07</date><risdate>2018</risdate><volume>2</volume><issue>43</issue><spage>2751</spage><epage>2759</epage><pages>2751-2759</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans -to- cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state. By treating the chromophore at the ab initio multiconfigurational level of theory, we can rationalize the experimental findings based on pump-probe spectroscopy, explaining the different and more complex scenario found for ChR2 in comparison to other rhodopsins. In particular, we find that depending on the hydrogen bonding pattern, different excited states are involved, hence making it possible to suggest one pattern as the most productive. Moreover, after photoisomerization the structure of the first photocycle intermediate, P 500 1 , is characterized by simulating the infrared spectrum and compared to available experimental data. This was obtained by extensive molecular dynamics, where the chromophore is described by a semi-empirical method based on density functional theory. The results clearly identify which counterion is responsible for accepting the proton from the retinal Schiff base: the side chain of the glutamic acid E123. The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans -to- cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30362495</pmid><doi>10.1039/c8cp05210g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7158-7994</orcidid><orcidid>https://orcid.org/0000-0001-8536-6869</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018-11, Vol.2 (43), p.2751-2759
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_C8CP05210G
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Animals
Channelrhodopsins - chemistry
Chromophores
Computer simulation
Density functional theory
Glutamic acid
Ground state
Hydrogen Bonding
Imines
Infrared radiation
Isomerism
Models, Molecular
Molecular dynamics
Molecular orbitals
Photochemistry
Quantum mechanics
Retina - chemistry
Schiff Bases - chemistry
Spectrum analysis
title Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20hydrogen%20bonding%20environments%20of%20the%20retinal%20protonated%20Schiff%20base%20control%20the%20photoisomerization%20in%20channelrhodopsin-2&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Guo,%20Yanan&rft.date=2018-11-07&rft.volume=2&rft.issue=43&rft.spage=2751&rft.epage=2759&rft.pages=2751-2759&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp05210g&rft_dat=%3Cproquest_cross%3E2126902287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130266053&rft_id=info:pmid/30362495&rfr_iscdi=true