Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol

Electrochemical reduction of CO 2 is considered to be an efficient strategy for converting CO 2 emissions into valued-added carbon compounds. However, it often suffers from high overpotential, low product faradaic efficiency and poor selectivity for the desired products. Herein, a cost-effective met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (12), p.525-531
Hauptverfasser: Lv, Kuilin, Fan, Yanchen, Zhu, Ying, Yuan, Yi, Wang, Jinrong, Zhang, Qianfan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 531
container_issue 12
container_start_page 525
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Lv, Kuilin
Fan, Yanchen
Zhu, Ying
Yuan, Yi
Wang, Jinrong
Zhang, Qianfan
description Electrochemical reduction of CO 2 is considered to be an efficient strategy for converting CO 2 emissions into valued-added carbon compounds. However, it often suffers from high overpotential, low product faradaic efficiency and poor selectivity for the desired products. Herein, a cost-effective method was designed to anchor Ag nanoparticles onto 3D graphene-wrapped nitrogen-doped carbon foam (Ag-G-NCF) by direct carbonization of melamine foam loaded with graphene oxide and silver salt. Directly acting as a high-efficiency electrode for CO 2 electrochemical reduction, the Ag-G-NCF can efficiently and preferentially convert CO 2 to ethanol with faradaic efficiencies (FEs) of 82.1-85.2% at −0.6 to −0.7 V ( vs. RHE), overcoming the usual limitation of low FE and selectivity for C2 products. Density functional theory calculations confirmed that the pyridinic N species of the Ag-G-NCF catalyst exhibited a higher bonding ability toward CO* intermediates than other N species, and that then the Ag particles gradually converted the CO* to the OC-COH intermediate of ethanol. Its excellent performance in CO 2 electroreduction can be attributed to a combination of the synergistic catalysis occurring between the pyridinic N present at high content and the Ag nanoparticles, the hierarchical macroporous structure, and the good conductivity. 3D macroporous hierarchical Ag-G-NCF can efficiently convert CO 2 to ethanol with a low overpotential, high faradaic efficiency and high selectivity.
doi_str_mv 10.1039/c7ta10802h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C7TA10802H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015481338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-853716063940a81def9ce54efa1de797011310534ce061a169da835c9382ef7c3</originalsourceid><addsrcrecordid>eNpFkNFLwzAQxoMoOOZefBcCvgl1l6ZtkscxphNEX-Zziel17eiammTi_nvjNuY93H1wv_sOPkJuGTwy4GpqRNAMJKTNBRmlkEMiMlVcnrWU12Ti_QZiSYBCqRHZLzrtQ2vobJ3o3jTWYUXfksoOca6dHhrscWq0-7Q9ra3exuZoaJB67NCE9hvpQThrGty2Rnc0WuziJh7Ymp5Oq9b-tBXSYCmGRve2uyFXte48Tk5zTD6eFqv5Mnl9f36Zz14Tw2UWEplzwQoouMpAS1ZhrQzmGdY6aqEEMMYZ5DwzCAXTrFCVljw3issUa2H4mNwffQdnv3boQ7mxO9fHl2UKLM8k41xG6uFIGWe9d1iXg2u32u1LBuVfuuVcrGaHdJcRvjvCzpsz958-_wX_33bS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015481338</pqid></control><display><type>article</type><title>Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lv, Kuilin ; Fan, Yanchen ; Zhu, Ying ; Yuan, Yi ; Wang, Jinrong ; Zhang, Qianfan</creator><creatorcontrib>Lv, Kuilin ; Fan, Yanchen ; Zhu, Ying ; Yuan, Yi ; Wang, Jinrong ; Zhang, Qianfan</creatorcontrib><description>Electrochemical reduction of CO 2 is considered to be an efficient strategy for converting CO 2 emissions into valued-added carbon compounds. However, it often suffers from high overpotential, low product faradaic efficiency and poor selectivity for the desired products. Herein, a cost-effective method was designed to anchor Ag nanoparticles onto 3D graphene-wrapped nitrogen-doped carbon foam (Ag-G-NCF) by direct carbonization of melamine foam loaded with graphene oxide and silver salt. Directly acting as a high-efficiency electrode for CO 2 electrochemical reduction, the Ag-G-NCF can efficiently and preferentially convert CO 2 to ethanol with faradaic efficiencies (FEs) of 82.1-85.2% at −0.6 to −0.7 V ( vs. RHE), overcoming the usual limitation of low FE and selectivity for C2 products. Density functional theory calculations confirmed that the pyridinic N species of the Ag-G-NCF catalyst exhibited a higher bonding ability toward CO* intermediates than other N species, and that then the Ag particles gradually converted the CO* to the OC-COH intermediate of ethanol. Its excellent performance in CO 2 electroreduction can be attributed to a combination of the synergistic catalysis occurring between the pyridinic N present at high content and the Ag nanoparticles, the hierarchical macroporous structure, and the good conductivity. 3D macroporous hierarchical Ag-G-NCF can efficiently convert CO 2 to ethanol with a low overpotential, high faradaic efficiency and high selectivity.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta10802h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anchors ; Carbon compounds ; Carbon dioxide ; Carbon dioxide emissions ; Carbon monoxide ; Carbonization ; Catalysis ; Chemical reduction ; Density functional theory ; Electrochemistry ; Ethanol ; Graphene ; Intermediates ; Melamine ; Nanoparticles ; Nitrogen ; Salts ; Selectivity ; Silver ; Structural hierarchy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (12), p.525-531</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-853716063940a81def9ce54efa1de797011310534ce061a169da835c9382ef7c3</citedby><cites>FETCH-LOGICAL-c384t-853716063940a81def9ce54efa1de797011310534ce061a169da835c9382ef7c3</cites><orcidid>0000-0003-1950-0251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Lv, Kuilin</creatorcontrib><creatorcontrib>Fan, Yanchen</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Yuan, Yi</creatorcontrib><creatorcontrib>Wang, Jinrong</creatorcontrib><creatorcontrib>Zhang, Qianfan</creatorcontrib><title>Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Electrochemical reduction of CO 2 is considered to be an efficient strategy for converting CO 2 emissions into valued-added carbon compounds. However, it often suffers from high overpotential, low product faradaic efficiency and poor selectivity for the desired products. Herein, a cost-effective method was designed to anchor Ag nanoparticles onto 3D graphene-wrapped nitrogen-doped carbon foam (Ag-G-NCF) by direct carbonization of melamine foam loaded with graphene oxide and silver salt. Directly acting as a high-efficiency electrode for CO 2 electrochemical reduction, the Ag-G-NCF can efficiently and preferentially convert CO 2 to ethanol with faradaic efficiencies (FEs) of 82.1-85.2% at −0.6 to −0.7 V ( vs. RHE), overcoming the usual limitation of low FE and selectivity for C2 products. Density functional theory calculations confirmed that the pyridinic N species of the Ag-G-NCF catalyst exhibited a higher bonding ability toward CO* intermediates than other N species, and that then the Ag particles gradually converted the CO* to the OC-COH intermediate of ethanol. Its excellent performance in CO 2 electroreduction can be attributed to a combination of the synergistic catalysis occurring between the pyridinic N present at high content and the Ag nanoparticles, the hierarchical macroporous structure, and the good conductivity. 3D macroporous hierarchical Ag-G-NCF can efficiently convert CO 2 to ethanol with a low overpotential, high faradaic efficiency and high selectivity.</description><subject>Anchors</subject><subject>Carbon compounds</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon monoxide</subject><subject>Carbonization</subject><subject>Catalysis</subject><subject>Chemical reduction</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Ethanol</subject><subject>Graphene</subject><subject>Intermediates</subject><subject>Melamine</subject><subject>Nanoparticles</subject><subject>Nitrogen</subject><subject>Salts</subject><subject>Selectivity</subject><subject>Silver</subject><subject>Structural hierarchy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkNFLwzAQxoMoOOZefBcCvgl1l6ZtkscxphNEX-Zziel17eiammTi_nvjNuY93H1wv_sOPkJuGTwy4GpqRNAMJKTNBRmlkEMiMlVcnrWU12Ti_QZiSYBCqRHZLzrtQ2vobJ3o3jTWYUXfksoOca6dHhrscWq0-7Q9ra3exuZoaJB67NCE9hvpQThrGty2Rnc0WuziJh7Ymp5Oq9b-tBXSYCmGRve2uyFXte48Tk5zTD6eFqv5Mnl9f36Zz14Tw2UWEplzwQoouMpAS1ZhrQzmGdY6aqEEMMYZ5DwzCAXTrFCVljw3issUa2H4mNwffQdnv3boQ7mxO9fHl2UKLM8k41xG6uFIGWe9d1iXg2u32u1LBuVfuuVcrGaHdJcRvjvCzpsz958-_wX_33bS</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Lv, Kuilin</creator><creator>Fan, Yanchen</creator><creator>Zhu, Ying</creator><creator>Yuan, Yi</creator><creator>Wang, Jinrong</creator><creator>Zhang, Qianfan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1950-0251</orcidid></search><sort><creationdate>2018</creationdate><title>Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol</title><author>Lv, Kuilin ; Fan, Yanchen ; Zhu, Ying ; Yuan, Yi ; Wang, Jinrong ; Zhang, Qianfan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-853716063940a81def9ce54efa1de797011310534ce061a169da835c9382ef7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anchors</topic><topic>Carbon compounds</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon monoxide</topic><topic>Carbonization</topic><topic>Catalysis</topic><topic>Chemical reduction</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Ethanol</topic><topic>Graphene</topic><topic>Intermediates</topic><topic>Melamine</topic><topic>Nanoparticles</topic><topic>Nitrogen</topic><topic>Salts</topic><topic>Selectivity</topic><topic>Silver</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Kuilin</creatorcontrib><creatorcontrib>Fan, Yanchen</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Yuan, Yi</creatorcontrib><creatorcontrib>Wang, Jinrong</creatorcontrib><creatorcontrib>Zhang, Qianfan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Kuilin</au><au>Fan, Yanchen</au><au>Zhu, Ying</au><au>Yuan, Yi</au><au>Wang, Jinrong</au><au>Zhang, Qianfan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>12</issue><spage>525</spage><epage>531</epage><pages>525-531</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Electrochemical reduction of CO 2 is considered to be an efficient strategy for converting CO 2 emissions into valued-added carbon compounds. However, it often suffers from high overpotential, low product faradaic efficiency and poor selectivity for the desired products. Herein, a cost-effective method was designed to anchor Ag nanoparticles onto 3D graphene-wrapped nitrogen-doped carbon foam (Ag-G-NCF) by direct carbonization of melamine foam loaded with graphene oxide and silver salt. Directly acting as a high-efficiency electrode for CO 2 electrochemical reduction, the Ag-G-NCF can efficiently and preferentially convert CO 2 to ethanol with faradaic efficiencies (FEs) of 82.1-85.2% at −0.6 to −0.7 V ( vs. RHE), overcoming the usual limitation of low FE and selectivity for C2 products. Density functional theory calculations confirmed that the pyridinic N species of the Ag-G-NCF catalyst exhibited a higher bonding ability toward CO* intermediates than other N species, and that then the Ag particles gradually converted the CO* to the OC-COH intermediate of ethanol. Its excellent performance in CO 2 electroreduction can be attributed to a combination of the synergistic catalysis occurring between the pyridinic N present at high content and the Ag nanoparticles, the hierarchical macroporous structure, and the good conductivity. 3D macroporous hierarchical Ag-G-NCF can efficiently convert CO 2 to ethanol with a low overpotential, high faradaic efficiency and high selectivity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ta10802h</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1950-0251</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (12), p.525-531
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_C7TA10802H
source Royal Society Of Chemistry Journals 2008-
subjects Anchors
Carbon compounds
Carbon dioxide
Carbon dioxide emissions
Carbon monoxide
Carbonization
Catalysis
Chemical reduction
Density functional theory
Electrochemistry
Ethanol
Graphene
Intermediates
Melamine
Nanoparticles
Nitrogen
Salts
Selectivity
Silver
Structural hierarchy
title Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastic%20Ag-anchored%20N-doped%20graphene/carbon%20foam%20for%20the%20selective%20electrochemical%20reduction%20of%20carbon%20dioxide%20to%20ethanol&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lv,%20Kuilin&rft.date=2018&rft.volume=6&rft.issue=12&rft.spage=525&rft.epage=531&rft.pages=525-531&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta10802h&rft_dat=%3Cproquest_cross%3E2015481338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015481338&rft_id=info:pmid/&rfr_iscdi=true