Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol
Electrochemical reduction of CO 2 is considered to be an efficient strategy for converting CO 2 emissions into valued-added carbon compounds. However, it often suffers from high overpotential, low product faradaic efficiency and poor selectivity for the desired products. Herein, a cost-effective met...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (12), p.525-531 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 531 |
---|---|
container_issue | 12 |
container_start_page | 525 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 6 |
creator | Lv, Kuilin Fan, Yanchen Zhu, Ying Yuan, Yi Wang, Jinrong Zhang, Qianfan |
description | Electrochemical reduction of CO
2
is considered to be an efficient strategy for converting CO
2
emissions into valued-added carbon compounds. However, it often suffers from high overpotential, low product faradaic efficiency and poor selectivity for the desired products. Herein, a cost-effective method was designed to anchor Ag nanoparticles onto 3D graphene-wrapped nitrogen-doped carbon foam (Ag-G-NCF) by direct carbonization of melamine foam loaded with graphene oxide and silver salt. Directly acting as a high-efficiency electrode for CO
2
electrochemical reduction, the Ag-G-NCF can efficiently and preferentially convert CO
2
to ethanol with faradaic efficiencies (FEs) of 82.1-85.2% at −0.6 to −0.7 V (
vs.
RHE), overcoming the usual limitation of low FE and selectivity for C2 products. Density functional theory calculations confirmed that the pyridinic N species of the Ag-G-NCF catalyst exhibited a higher bonding ability toward CO* intermediates than other N species, and that then the Ag particles gradually converted the CO* to the OC-COH intermediate of ethanol. Its excellent performance in CO
2
electroreduction can be attributed to a combination of the synergistic catalysis occurring between the pyridinic N present at high content and the Ag nanoparticles, the hierarchical macroporous structure, and the good conductivity.
3D macroporous hierarchical Ag-G-NCF can efficiently convert CO
2
to ethanol with a low overpotential, high faradaic efficiency and high selectivity. |
doi_str_mv | 10.1039/c7ta10802h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C7TA10802H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015481338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-853716063940a81def9ce54efa1de797011310534ce061a169da835c9382ef7c3</originalsourceid><addsrcrecordid>eNpFkNFLwzAQxoMoOOZefBcCvgl1l6ZtkscxphNEX-Zziel17eiammTi_nvjNuY93H1wv_sOPkJuGTwy4GpqRNAMJKTNBRmlkEMiMlVcnrWU12Ti_QZiSYBCqRHZLzrtQ2vobJ3o3jTWYUXfksoOca6dHhrscWq0-7Q9ra3exuZoaJB67NCE9hvpQThrGty2Rnc0WuziJh7Ymp5Oq9b-tBXSYCmGRve2uyFXte48Tk5zTD6eFqv5Mnl9f36Zz14Tw2UWEplzwQoouMpAS1ZhrQzmGdY6aqEEMMYZ5DwzCAXTrFCVljw3issUa2H4mNwffQdnv3boQ7mxO9fHl2UKLM8k41xG6uFIGWe9d1iXg2u32u1LBuVfuuVcrGaHdJcRvjvCzpsz958-_wX_33bS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015481338</pqid></control><display><type>article</type><title>Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lv, Kuilin ; Fan, Yanchen ; Zhu, Ying ; Yuan, Yi ; Wang, Jinrong ; Zhang, Qianfan</creator><creatorcontrib>Lv, Kuilin ; Fan, Yanchen ; Zhu, Ying ; Yuan, Yi ; Wang, Jinrong ; Zhang, Qianfan</creatorcontrib><description>Electrochemical reduction of CO
2
is considered to be an efficient strategy for converting CO
2
emissions into valued-added carbon compounds. However, it often suffers from high overpotential, low product faradaic efficiency and poor selectivity for the desired products. Herein, a cost-effective method was designed to anchor Ag nanoparticles onto 3D graphene-wrapped nitrogen-doped carbon foam (Ag-G-NCF) by direct carbonization of melamine foam loaded with graphene oxide and silver salt. Directly acting as a high-efficiency electrode for CO
2
electrochemical reduction, the Ag-G-NCF can efficiently and preferentially convert CO
2
to ethanol with faradaic efficiencies (FEs) of 82.1-85.2% at −0.6 to −0.7 V (
vs.
RHE), overcoming the usual limitation of low FE and selectivity for C2 products. Density functional theory calculations confirmed that the pyridinic N species of the Ag-G-NCF catalyst exhibited a higher bonding ability toward CO* intermediates than other N species, and that then the Ag particles gradually converted the CO* to the OC-COH intermediate of ethanol. Its excellent performance in CO
2
electroreduction can be attributed to a combination of the synergistic catalysis occurring between the pyridinic N present at high content and the Ag nanoparticles, the hierarchical macroporous structure, and the good conductivity.
3D macroporous hierarchical Ag-G-NCF can efficiently convert CO
2
to ethanol with a low overpotential, high faradaic efficiency and high selectivity.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta10802h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anchors ; Carbon compounds ; Carbon dioxide ; Carbon dioxide emissions ; Carbon monoxide ; Carbonization ; Catalysis ; Chemical reduction ; Density functional theory ; Electrochemistry ; Ethanol ; Graphene ; Intermediates ; Melamine ; Nanoparticles ; Nitrogen ; Salts ; Selectivity ; Silver ; Structural hierarchy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (12), p.525-531</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-853716063940a81def9ce54efa1de797011310534ce061a169da835c9382ef7c3</citedby><cites>FETCH-LOGICAL-c384t-853716063940a81def9ce54efa1de797011310534ce061a169da835c9382ef7c3</cites><orcidid>0000-0003-1950-0251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Lv, Kuilin</creatorcontrib><creatorcontrib>Fan, Yanchen</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Yuan, Yi</creatorcontrib><creatorcontrib>Wang, Jinrong</creatorcontrib><creatorcontrib>Zhang, Qianfan</creatorcontrib><title>Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Electrochemical reduction of CO
2
is considered to be an efficient strategy for converting CO
2
emissions into valued-added carbon compounds. However, it often suffers from high overpotential, low product faradaic efficiency and poor selectivity for the desired products. Herein, a cost-effective method was designed to anchor Ag nanoparticles onto 3D graphene-wrapped nitrogen-doped carbon foam (Ag-G-NCF) by direct carbonization of melamine foam loaded with graphene oxide and silver salt. Directly acting as a high-efficiency electrode for CO
2
electrochemical reduction, the Ag-G-NCF can efficiently and preferentially convert CO
2
to ethanol with faradaic efficiencies (FEs) of 82.1-85.2% at −0.6 to −0.7 V (
vs.
RHE), overcoming the usual limitation of low FE and selectivity for C2 products. Density functional theory calculations confirmed that the pyridinic N species of the Ag-G-NCF catalyst exhibited a higher bonding ability toward CO* intermediates than other N species, and that then the Ag particles gradually converted the CO* to the OC-COH intermediate of ethanol. Its excellent performance in CO
2
electroreduction can be attributed to a combination of the synergistic catalysis occurring between the pyridinic N present at high content and the Ag nanoparticles, the hierarchical macroporous structure, and the good conductivity.
3D macroporous hierarchical Ag-G-NCF can efficiently convert CO
2
to ethanol with a low overpotential, high faradaic efficiency and high selectivity.</description><subject>Anchors</subject><subject>Carbon compounds</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon monoxide</subject><subject>Carbonization</subject><subject>Catalysis</subject><subject>Chemical reduction</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Ethanol</subject><subject>Graphene</subject><subject>Intermediates</subject><subject>Melamine</subject><subject>Nanoparticles</subject><subject>Nitrogen</subject><subject>Salts</subject><subject>Selectivity</subject><subject>Silver</subject><subject>Structural hierarchy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkNFLwzAQxoMoOOZefBcCvgl1l6ZtkscxphNEX-Zziel17eiammTi_nvjNuY93H1wv_sOPkJuGTwy4GpqRNAMJKTNBRmlkEMiMlVcnrWU12Ti_QZiSYBCqRHZLzrtQ2vobJ3o3jTWYUXfksoOca6dHhrscWq0-7Q9ra3exuZoaJB67NCE9hvpQThrGty2Rnc0WuziJh7Ymp5Oq9b-tBXSYCmGRve2uyFXte48Tk5zTD6eFqv5Mnl9f36Zz14Tw2UWEplzwQoouMpAS1ZhrQzmGdY6aqEEMMYZ5DwzCAXTrFCVljw3issUa2H4mNwffQdnv3boQ7mxO9fHl2UKLM8k41xG6uFIGWe9d1iXg2u32u1LBuVfuuVcrGaHdJcRvjvCzpsz958-_wX_33bS</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Lv, Kuilin</creator><creator>Fan, Yanchen</creator><creator>Zhu, Ying</creator><creator>Yuan, Yi</creator><creator>Wang, Jinrong</creator><creator>Zhang, Qianfan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1950-0251</orcidid></search><sort><creationdate>2018</creationdate><title>Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol</title><author>Lv, Kuilin ; Fan, Yanchen ; Zhu, Ying ; Yuan, Yi ; Wang, Jinrong ; Zhang, Qianfan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-853716063940a81def9ce54efa1de797011310534ce061a169da835c9382ef7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anchors</topic><topic>Carbon compounds</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon monoxide</topic><topic>Carbonization</topic><topic>Catalysis</topic><topic>Chemical reduction</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Ethanol</topic><topic>Graphene</topic><topic>Intermediates</topic><topic>Melamine</topic><topic>Nanoparticles</topic><topic>Nitrogen</topic><topic>Salts</topic><topic>Selectivity</topic><topic>Silver</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Kuilin</creatorcontrib><creatorcontrib>Fan, Yanchen</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Yuan, Yi</creatorcontrib><creatorcontrib>Wang, Jinrong</creatorcontrib><creatorcontrib>Zhang, Qianfan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Kuilin</au><au>Fan, Yanchen</au><au>Zhu, Ying</au><au>Yuan, Yi</au><au>Wang, Jinrong</au><au>Zhang, Qianfan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>12</issue><spage>525</spage><epage>531</epage><pages>525-531</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Electrochemical reduction of CO
2
is considered to be an efficient strategy for converting CO
2
emissions into valued-added carbon compounds. However, it often suffers from high overpotential, low product faradaic efficiency and poor selectivity for the desired products. Herein, a cost-effective method was designed to anchor Ag nanoparticles onto 3D graphene-wrapped nitrogen-doped carbon foam (Ag-G-NCF) by direct carbonization of melamine foam loaded with graphene oxide and silver salt. Directly acting as a high-efficiency electrode for CO
2
electrochemical reduction, the Ag-G-NCF can efficiently and preferentially convert CO
2
to ethanol with faradaic efficiencies (FEs) of 82.1-85.2% at −0.6 to −0.7 V (
vs.
RHE), overcoming the usual limitation of low FE and selectivity for C2 products. Density functional theory calculations confirmed that the pyridinic N species of the Ag-G-NCF catalyst exhibited a higher bonding ability toward CO* intermediates than other N species, and that then the Ag particles gradually converted the CO* to the OC-COH intermediate of ethanol. Its excellent performance in CO
2
electroreduction can be attributed to a combination of the synergistic catalysis occurring between the pyridinic N present at high content and the Ag nanoparticles, the hierarchical macroporous structure, and the good conductivity.
3D macroporous hierarchical Ag-G-NCF can efficiently convert CO
2
to ethanol with a low overpotential, high faradaic efficiency and high selectivity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ta10802h</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1950-0251</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (12), p.525-531 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C7TA10802H |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anchors Carbon compounds Carbon dioxide Carbon dioxide emissions Carbon monoxide Carbonization Catalysis Chemical reduction Density functional theory Electrochemistry Ethanol Graphene Intermediates Melamine Nanoparticles Nitrogen Salts Selectivity Silver Structural hierarchy |
title | Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastic%20Ag-anchored%20N-doped%20graphene/carbon%20foam%20for%20the%20selective%20electrochemical%20reduction%20of%20carbon%20dioxide%20to%20ethanol&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lv,%20Kuilin&rft.date=2018&rft.volume=6&rft.issue=12&rft.spage=525&rft.epage=531&rft.pages=525-531&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta10802h&rft_dat=%3Cproquest_cross%3E2015481338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015481338&rft_id=info:pmid/&rfr_iscdi=true |