A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing

Truxene is employed as a building block to successfully synthesize novel covalent organic frameworks (COFs). The condensation reaction between truxene (10,15-dihydro-5 H -diindeno[1,2- a :1′,2′- c ]fluorene, TX) and 1,4-phenylenediboronic acid (DBA) results in a crystalline COF with boron ester link...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017, Vol.5 (41), p.2182-21827
Hauptverfasser: Singh, Harpreet, Tomer, Vijay K, Jena, Nityasagar, Bala, Indu, Sharma, Nidhi, Nepak, Devadutta, De Sarkar, Abir, Kailasam, Kamalakannan, Pal, Santanu Kumar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21827
container_issue 41
container_start_page 2182
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 5
creator Singh, Harpreet
Tomer, Vijay K
Jena, Nityasagar
Bala, Indu
Sharma, Nidhi
Nepak, Devadutta
De Sarkar, Abir
Kailasam, Kamalakannan
Pal, Santanu Kumar
description Truxene is employed as a building block to successfully synthesize novel covalent organic frameworks (COFs). The condensation reaction between truxene (10,15-dihydro-5 H -diindeno[1,2- a :1′,2′- c ]fluorene, TX) and 1,4-phenylenediboronic acid (DBA) results in a crystalline COF with boron ester linkages (COF-TXDBA) and a surface area of 1526 m 2 g −1 , as confirmed by powder X-ray diffraction (PXRD) and Brunauer-Emmett-Teller (BET) surface area measurements. This is the first study where nanochannels generated by periodic COF planar layers are shown to ease the interactions of the boron ester linkages with the water molecules for efficient humidity sensing. The COF-TXDBA based % RH sensor exhibits a change of 3 orders of magnitude in impedance in the 11-98% RH range, with response and recovery times of 37 s and 42 s, respectively. The response transients measured by switching COF-TXDBA sensor back and forth in 4 loops of % RH range displays excellent reversibility of the sensor with a deviation of 2.3% in the switching process. Sensing mechanism illustrating proton hopping between the water molecules physisorbed on the COF-TXDBA surface.
doi_str_mv 10.1039/c7ta05043g
format Article
fullrecord <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C7TA05043G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7ta05043g</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-720c0956ce3d9b6496f0d3bc1b14719e620c0f01542796b0de23c9c0fb66951f3</originalsourceid><addsrcrecordid>eNpFkNFLwzAQh4MoOOZefBfyLFYvTZs0j2XoFAa-zOeSpsmMdklJMnX__Ton817ux93HcXwIXRO4J0DFg-JJQgkFXZ-hST6mjBeCnZ9yVV2iWYwfMFYFwISYIFPjwQe_jXdYhV1Msu-t0ziF7Y92Omtl1B1W_kv22iXsw1o6q7AJcqO_ffjE0nXYpojlMPRWyWS9w9bh9-3GdjbtcNQuWre-QhdG9lHP_voUvT09rubP2fJ18TKvl5nKS5oynoMCUTKlaSdaNn5voKOtIi0pOBGaHfYGSFnkXLAWOp1TJcZRy5goiaFTdHu8q4KPMWjTDMFuZNg1BJqDpGbOV_WvpMUI3xzhENWJ-5dI9xleZRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Singh, Harpreet ; Tomer, Vijay K ; Jena, Nityasagar ; Bala, Indu ; Sharma, Nidhi ; Nepak, Devadutta ; De Sarkar, Abir ; Kailasam, Kamalakannan ; Pal, Santanu Kumar</creator><creatorcontrib>Singh, Harpreet ; Tomer, Vijay K ; Jena, Nityasagar ; Bala, Indu ; Sharma, Nidhi ; Nepak, Devadutta ; De Sarkar, Abir ; Kailasam, Kamalakannan ; Pal, Santanu Kumar</creatorcontrib><description>Truxene is employed as a building block to successfully synthesize novel covalent organic frameworks (COFs). The condensation reaction between truxene (10,15-dihydro-5 H -diindeno[1,2- a :1′,2′- c ]fluorene, TX) and 1,4-phenylenediboronic acid (DBA) results in a crystalline COF with boron ester linkages (COF-TXDBA) and a surface area of 1526 m 2 g −1 , as confirmed by powder X-ray diffraction (PXRD) and Brunauer-Emmett-Teller (BET) surface area measurements. This is the first study where nanochannels generated by periodic COF planar layers are shown to ease the interactions of the boron ester linkages with the water molecules for efficient humidity sensing. The COF-TXDBA based % RH sensor exhibits a change of 3 orders of magnitude in impedance in the 11-98% RH range, with response and recovery times of 37 s and 42 s, respectively. The response transients measured by switching COF-TXDBA sensor back and forth in 4 loops of % RH range displays excellent reversibility of the sensor with a deviation of 2.3% in the switching process. Sensing mechanism illustrating proton hopping between the water molecules physisorbed on the COF-TXDBA surface.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta05043g</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (41), p.2182-21827</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-720c0956ce3d9b6496f0d3bc1b14719e620c0f01542796b0de23c9c0fb66951f3</citedby><cites>FETCH-LOGICAL-c253t-720c0956ce3d9b6496f0d3bc1b14719e620c0f01542796b0de23c9c0fb66951f3</cites><orcidid>0000-0002-4368-9149 ; 0000-0001-5752-6589 ; 0000-0002-5931-7649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Singh, Harpreet</creatorcontrib><creatorcontrib>Tomer, Vijay K</creatorcontrib><creatorcontrib>Jena, Nityasagar</creatorcontrib><creatorcontrib>Bala, Indu</creatorcontrib><creatorcontrib>Sharma, Nidhi</creatorcontrib><creatorcontrib>Nepak, Devadutta</creatorcontrib><creatorcontrib>De Sarkar, Abir</creatorcontrib><creatorcontrib>Kailasam, Kamalakannan</creatorcontrib><creatorcontrib>Pal, Santanu Kumar</creatorcontrib><title>A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Truxene is employed as a building block to successfully synthesize novel covalent organic frameworks (COFs). The condensation reaction between truxene (10,15-dihydro-5 H -diindeno[1,2- a :1′,2′- c ]fluorene, TX) and 1,4-phenylenediboronic acid (DBA) results in a crystalline COF with boron ester linkages (COF-TXDBA) and a surface area of 1526 m 2 g −1 , as confirmed by powder X-ray diffraction (PXRD) and Brunauer-Emmett-Teller (BET) surface area measurements. This is the first study where nanochannels generated by periodic COF planar layers are shown to ease the interactions of the boron ester linkages with the water molecules for efficient humidity sensing. The COF-TXDBA based % RH sensor exhibits a change of 3 orders of magnitude in impedance in the 11-98% RH range, with response and recovery times of 37 s and 42 s, respectively. The response transients measured by switching COF-TXDBA sensor back and forth in 4 loops of % RH range displays excellent reversibility of the sensor with a deviation of 2.3% in the switching process. Sensing mechanism illustrating proton hopping between the water molecules physisorbed on the COF-TXDBA surface.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkNFLwzAQh4MoOOZefBfyLFYvTZs0j2XoFAa-zOeSpsmMdklJMnX__Ton817ux93HcXwIXRO4J0DFg-JJQgkFXZ-hST6mjBeCnZ9yVV2iWYwfMFYFwISYIFPjwQe_jXdYhV1Msu-t0ziF7Y92Omtl1B1W_kv22iXsw1o6q7AJcqO_ffjE0nXYpojlMPRWyWS9w9bh9-3GdjbtcNQuWre-QhdG9lHP_voUvT09rubP2fJ18TKvl5nKS5oynoMCUTKlaSdaNn5voKOtIi0pOBGaHfYGSFnkXLAWOp1TJcZRy5goiaFTdHu8q4KPMWjTDMFuZNg1BJqDpGbOV_WvpMUI3xzhENWJ-5dI9xleZRk</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Singh, Harpreet</creator><creator>Tomer, Vijay K</creator><creator>Jena, Nityasagar</creator><creator>Bala, Indu</creator><creator>Sharma, Nidhi</creator><creator>Nepak, Devadutta</creator><creator>De Sarkar, Abir</creator><creator>Kailasam, Kamalakannan</creator><creator>Pal, Santanu Kumar</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4368-9149</orcidid><orcidid>https://orcid.org/0000-0001-5752-6589</orcidid><orcidid>https://orcid.org/0000-0002-5931-7649</orcidid></search><sort><creationdate>2017</creationdate><title>A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing</title><author>Singh, Harpreet ; Tomer, Vijay K ; Jena, Nityasagar ; Bala, Indu ; Sharma, Nidhi ; Nepak, Devadutta ; De Sarkar, Abir ; Kailasam, Kamalakannan ; Pal, Santanu Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-720c0956ce3d9b6496f0d3bc1b14719e620c0f01542796b0de23c9c0fb66951f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Harpreet</creatorcontrib><creatorcontrib>Tomer, Vijay K</creatorcontrib><creatorcontrib>Jena, Nityasagar</creatorcontrib><creatorcontrib>Bala, Indu</creatorcontrib><creatorcontrib>Sharma, Nidhi</creatorcontrib><creatorcontrib>Nepak, Devadutta</creatorcontrib><creatorcontrib>De Sarkar, Abir</creatorcontrib><creatorcontrib>Kailasam, Kamalakannan</creatorcontrib><creatorcontrib>Pal, Santanu Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Harpreet</au><au>Tomer, Vijay K</au><au>Jena, Nityasagar</au><au>Bala, Indu</au><au>Sharma, Nidhi</au><au>Nepak, Devadutta</au><au>De Sarkar, Abir</au><au>Kailasam, Kamalakannan</au><au>Pal, Santanu Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2017</date><risdate>2017</risdate><volume>5</volume><issue>41</issue><spage>2182</spage><epage>21827</epage><pages>2182-21827</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Truxene is employed as a building block to successfully synthesize novel covalent organic frameworks (COFs). The condensation reaction between truxene (10,15-dihydro-5 H -diindeno[1,2- a :1′,2′- c ]fluorene, TX) and 1,4-phenylenediboronic acid (DBA) results in a crystalline COF with boron ester linkages (COF-TXDBA) and a surface area of 1526 m 2 g −1 , as confirmed by powder X-ray diffraction (PXRD) and Brunauer-Emmett-Teller (BET) surface area measurements. This is the first study where nanochannels generated by periodic COF planar layers are shown to ease the interactions of the boron ester linkages with the water molecules for efficient humidity sensing. The COF-TXDBA based % RH sensor exhibits a change of 3 orders of magnitude in impedance in the 11-98% RH range, with response and recovery times of 37 s and 42 s, respectively. The response transients measured by switching COF-TXDBA sensor back and forth in 4 loops of % RH range displays excellent reversibility of the sensor with a deviation of 2.3% in the switching process. Sensing mechanism illustrating proton hopping between the water molecules physisorbed on the COF-TXDBA surface.</abstract><doi>10.1039/c7ta05043g</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4368-9149</orcidid><orcidid>https://orcid.org/0000-0001-5752-6589</orcidid><orcidid>https://orcid.org/0000-0002-5931-7649</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (41), p.2182-21827
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_C7TA05043G
source Royal Society Of Chemistry Journals 2008-
title A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20porous,%20crystalline%20truxene-based%20covalent%20organic%20framework%20and%20its%20application%20in%20humidity%20sensing&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Singh,%20Harpreet&rft.date=2017&rft.volume=5&rft.issue=41&rft.spage=2182&rft.epage=21827&rft.pages=2182-21827&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta05043g&rft_dat=%3Crsc_cross%3Ec7ta05043g%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true