Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films
Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical reductio...
Gespeichert in:
Veröffentlicht in: | RSC advances 2017-01, Vol.7 (23), p.13784-13788 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13788 |
---|---|
container_issue | 23 |
container_start_page | 13784 |
container_title | RSC advances |
container_volume | 7 |
creator | Esposito, V Ni, D. W Sanna, S Gualandris, F Pryds, N |
description | Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical reduction, with unexpected diffusion-driven effects such as fast migration of grain boundaries, porosity nucleation, and interdiffusion at low temperatures.
Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. |
doi_str_mv | 10.1039/c7ra01226h |
format | Article |
fullrecord | <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C7RA01226H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7ra01226h</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-92814eb82df9b8e33c6730f2460e43347bd817dd9cf777a678967cdcd7b9679e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGov3oV4FVbzsU02x7KoFQpCseclm0xsJLtbkij037u1op6cyzzwPjOHF6FLSm4p4erOyKgJZUxsT9CEkVIUjAh1-ofP0SylNzKOmFMm6ARt1hBAJ9-_YqOzH3psvXPv6UC-xwmCK4LvfAaLe90PJu5T1iH4HrAFByb7D8AGotc4b8cL50OXLtCZ0yHB7HtP0ebh_qVeFqvnx6d6sSoMp_NcKFbREtqKWafaCjg3QnLiWCkIlJyXsrUVldYq46SUWshKCWmssbIdQQGfopvjXxOHlCK4Zhd9p-O-oaQ5dNLUcr346mQ5yldHOSbz4_12NubX_-XNzjr-CZUAals</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Esposito, V ; Ni, D. W ; Sanna, S ; Gualandris, F ; Pryds, N</creator><creatorcontrib>Esposito, V ; Ni, D. W ; Sanna, S ; Gualandris, F ; Pryds, N</creatorcontrib><description>Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical reduction, with unexpected diffusion-driven effects such as fast migration of grain boundaries, porosity nucleation, and interdiffusion at low temperatures.
Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c7ra01226h</identifier><language>eng</language><ispartof>RSC advances, 2017-01, Vol.7 (23), p.13784-13788</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-92814eb82df9b8e33c6730f2460e43347bd817dd9cf777a678967cdcd7b9679e3</citedby><cites>FETCH-LOGICAL-c315t-92814eb82df9b8e33c6730f2460e43347bd817dd9cf777a678967cdcd7b9679e3</cites><orcidid>0000-0002-9817-7810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Esposito, V</creatorcontrib><creatorcontrib>Ni, D. W</creatorcontrib><creatorcontrib>Sanna, S</creatorcontrib><creatorcontrib>Gualandris, F</creatorcontrib><creatorcontrib>Pryds, N</creatorcontrib><title>Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films</title><title>RSC advances</title><description>Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical reduction, with unexpected diffusion-driven effects such as fast migration of grain boundaries, porosity nucleation, and interdiffusion at low temperatures.
Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion.</description><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGov3oV4FVbzsU02x7KoFQpCseclm0xsJLtbkij037u1op6cyzzwPjOHF6FLSm4p4erOyKgJZUxsT9CEkVIUjAh1-ofP0SylNzKOmFMm6ARt1hBAJ9-_YqOzH3psvXPv6UC-xwmCK4LvfAaLe90PJu5T1iH4HrAFByb7D8AGotc4b8cL50OXLtCZ0yHB7HtP0ebh_qVeFqvnx6d6sSoMp_NcKFbREtqKWafaCjg3QnLiWCkIlJyXsrUVldYq46SUWshKCWmssbIdQQGfopvjXxOHlCK4Zhd9p-O-oaQ5dNLUcr346mQ5yldHOSbz4_12NubX_-XNzjr-CZUAals</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Esposito, V</creator><creator>Ni, D. W</creator><creator>Sanna, S</creator><creator>Gualandris, F</creator><creator>Pryds, N</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9817-7810</orcidid></search><sort><creationdate>20170101</creationdate><title>Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films</title><author>Esposito, V ; Ni, D. W ; Sanna, S ; Gualandris, F ; Pryds, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-92814eb82df9b8e33c6730f2460e43347bd817dd9cf777a678967cdcd7b9679e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esposito, V</creatorcontrib><creatorcontrib>Ni, D. W</creatorcontrib><creatorcontrib>Sanna, S</creatorcontrib><creatorcontrib>Gualandris, F</creatorcontrib><creatorcontrib>Pryds, N</creatorcontrib><collection>CrossRef</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esposito, V</au><au>Ni, D. W</au><au>Sanna, S</au><au>Gualandris, F</au><au>Pryds, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films</atitle><jtitle>RSC advances</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>7</volume><issue>23</issue><spage>13784</spage><epage>13788</epage><pages>13784-13788</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical reduction, with unexpected diffusion-driven effects such as fast migration of grain boundaries, porosity nucleation, and interdiffusion at low temperatures.
Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion.</abstract><doi>10.1039/c7ra01226h</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9817-7810</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2017-01, Vol.7 (23), p.13784-13788 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C7RA01226H |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T09%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Releasing%20cation%20diffusion%20in%20self-limited%20nanocrystalline%20defective%20ceria%20thin%20films&rft.jtitle=RSC%20advances&rft.au=Esposito,%20V&rft.date=2017-01-01&rft.volume=7&rft.issue=23&rft.spage=13784&rft.epage=13788&rft.pages=13784-13788&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c7ra01226h&rft_dat=%3Crsc_cross%3Ec7ra01226h%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |