Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films

Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical reductio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2017-01, Vol.7 (23), p.13784-13788
Hauptverfasser: Esposito, V, Ni, D. W, Sanna, S, Gualandris, F, Pryds, N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13788
container_issue 23
container_start_page 13784
container_title RSC advances
container_volume 7
creator Esposito, V
Ni, D. W
Sanna, S
Gualandris, F
Pryds, N
description Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical reduction, with unexpected diffusion-driven effects such as fast migration of grain boundaries, porosity nucleation, and interdiffusion at low temperatures. Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion.
doi_str_mv 10.1039/c7ra01226h
format Article
fullrecord <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C7RA01226H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7ra01226h</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-92814eb82df9b8e33c6730f2460e43347bd817dd9cf777a678967cdcd7b9679e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGov3oV4FVbzsU02x7KoFQpCseclm0xsJLtbkij037u1op6cyzzwPjOHF6FLSm4p4erOyKgJZUxsT9CEkVIUjAh1-ofP0SylNzKOmFMm6ARt1hBAJ9-_YqOzH3psvXPv6UC-xwmCK4LvfAaLe90PJu5T1iH4HrAFByb7D8AGotc4b8cL50OXLtCZ0yHB7HtP0ebh_qVeFqvnx6d6sSoMp_NcKFbREtqKWafaCjg3QnLiWCkIlJyXsrUVldYq46SUWshKCWmssbIdQQGfopvjXxOHlCK4Zhd9p-O-oaQ5dNLUcr346mQ5yldHOSbz4_12NubX_-XNzjr-CZUAals</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Esposito, V ; Ni, D. W ; Sanna, S ; Gualandris, F ; Pryds, N</creator><creatorcontrib>Esposito, V ; Ni, D. W ; Sanna, S ; Gualandris, F ; Pryds, N</creatorcontrib><description>Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical reduction, with unexpected diffusion-driven effects such as fast migration of grain boundaries, porosity nucleation, and interdiffusion at low temperatures. Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c7ra01226h</identifier><language>eng</language><ispartof>RSC advances, 2017-01, Vol.7 (23), p.13784-13788</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-92814eb82df9b8e33c6730f2460e43347bd817dd9cf777a678967cdcd7b9679e3</citedby><cites>FETCH-LOGICAL-c315t-92814eb82df9b8e33c6730f2460e43347bd817dd9cf777a678967cdcd7b9679e3</cites><orcidid>0000-0002-9817-7810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Esposito, V</creatorcontrib><creatorcontrib>Ni, D. W</creatorcontrib><creatorcontrib>Sanna, S</creatorcontrib><creatorcontrib>Gualandris, F</creatorcontrib><creatorcontrib>Pryds, N</creatorcontrib><title>Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films</title><title>RSC advances</title><description>Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical reduction, with unexpected diffusion-driven effects such as fast migration of grain boundaries, porosity nucleation, and interdiffusion at low temperatures. Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion.</description><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGov3oV4FVbzsU02x7KoFQpCseclm0xsJLtbkij037u1op6cyzzwPjOHF6FLSm4p4erOyKgJZUxsT9CEkVIUjAh1-ofP0SylNzKOmFMm6ARt1hBAJ9-_YqOzH3psvXPv6UC-xwmCK4LvfAaLe90PJu5T1iH4HrAFByb7D8AGotc4b8cL50OXLtCZ0yHB7HtP0ebh_qVeFqvnx6d6sSoMp_NcKFbREtqKWafaCjg3QnLiWCkIlJyXsrUVldYq46SUWshKCWmssbIdQQGfopvjXxOHlCK4Zhd9p-O-oaQ5dNLUcr346mQ5yldHOSbz4_12NubX_-XNzjr-CZUAals</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Esposito, V</creator><creator>Ni, D. W</creator><creator>Sanna, S</creator><creator>Gualandris, F</creator><creator>Pryds, N</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9817-7810</orcidid></search><sort><creationdate>20170101</creationdate><title>Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films</title><author>Esposito, V ; Ni, D. W ; Sanna, S ; Gualandris, F ; Pryds, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-92814eb82df9b8e33c6730f2460e43347bd817dd9cf777a678967cdcd7b9679e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esposito, V</creatorcontrib><creatorcontrib>Ni, D. W</creatorcontrib><creatorcontrib>Sanna, S</creatorcontrib><creatorcontrib>Gualandris, F</creatorcontrib><creatorcontrib>Pryds, N</creatorcontrib><collection>CrossRef</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esposito, V</au><au>Ni, D. W</au><au>Sanna, S</au><au>Gualandris, F</au><au>Pryds, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films</atitle><jtitle>RSC advances</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>7</volume><issue>23</issue><spage>13784</spage><epage>13788</epage><pages>13784-13788</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical reduction, with unexpected diffusion-driven effects such as fast migration of grain boundaries, porosity nucleation, and interdiffusion at low temperatures. Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion.</abstract><doi>10.1039/c7ra01226h</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9817-7810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2017-01, Vol.7 (23), p.13784-13788
issn 2046-2069
2046-2069
language eng
recordid cdi_crossref_primary_10_1039_C7RA01226H
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T09%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Releasing%20cation%20diffusion%20in%20self-limited%20nanocrystalline%20defective%20ceria%20thin%20films&rft.jtitle=RSC%20advances&rft.au=Esposito,%20V&rft.date=2017-01-01&rft.volume=7&rft.issue=23&rft.spage=13784&rft.epage=13788&rft.pages=13784-13788&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c7ra01226h&rft_dat=%3Crsc_cross%3Ec7ra01226h%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true