Transition metal mediated carbonylative benzannulations

In carbonylative benzannulations, feedstock carbon monoxide is converted to a benzene ring, which is one of the most fundamentally important and common rings in natural products and pharmaceutical compounds. Carbon monoxide, however, is rather inert in the absence of transition metals. Historically,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic & biomolecular chemistry 2017-09, Vol.15 (36), p.749-754
Hauptverfasser: Song, Wangze, Blaszczyk, Stephanie A, Liu, Jitian, Wang, Shuojin, Tang, Weiping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In carbonylative benzannulations, feedstock carbon monoxide is converted to a benzene ring, which is one of the most fundamentally important and common rings in natural products and pharmaceutical compounds. Carbon monoxide, however, is rather inert in the absence of transition metals. Historically, carbonylative benzannulations have been mediated by stoichiometric chromium and iron in the form of Fischer carbenes. Recently, a number of transition metal-catalyzed carbonylative benzannulations have been developed, and almost all of them involve rhodium catalysts. This review will briefly discuss the mechanism and applications of carbonylative benzannulations involving Fischer carbenes and compare them with the more recent transition metal-catalyzed processes, including [3 + 2 + 1] cycloadditions, [5 + 1] cycloadditions, and other less common cycloadditions. This review summarizes novel building blocks recently developed for transition metal-catalyzed carbonylative benzannulations.
ISSN:1477-0520
1477-0539
DOI:10.1039/c7ob01000a