Accurate density functional theory (DFT) protocol for screening and designing chain transfer and branching agents for LDPE systems
In this work, a density functional theory (DFT) methodology was developed and validated against experimental data for relative hydrogen abstraction ( C s ) and monomer reactivity ratio ( r 1 ) parameters associated with free radical polymerization. For hydrogen abstraction, we considered ethane, cyc...
Gespeichert in:
Veröffentlicht in: | Molecular systems design & engineering 2018-02, Vol.3 (1), p.228-242 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 242 |
---|---|
container_issue | 1 |
container_start_page | 228 |
container_title | Molecular systems design & engineering |
container_volume | 3 |
creator | Konstantinov, Ivan Ewart, Sean Brown, Hayley Eddy, Christopher Mendenhall, Jonathan Munjal, Sarat |
description | In this work, a density functional theory (DFT) methodology was developed and validated against experimental data for relative hydrogen abstraction (
C
s
) and monomer reactivity ratio (
r
1
) parameters associated with free radical polymerization. For hydrogen abstraction, we considered ethane, cyclohexane, 2-butanone, propylene, isobutene, isobutane and propanal while methyl methacrylate, vinyl acetate, 1-butene, propylene and isobutene were the molecules of choice for benchmarking
r
1
. It was shown that the M06-2X/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level of theory along with the counterpoise correction for the basis set superposition error (BSSE) produced estimated values in excellent agreement with experimental data. The calculated parameters were within a factor of 1.5 from the experimental values. This translated into a maximum error of 0.32 kcal mol
−1
in Gibbs free energy of activation difference. The only exception was
C
s
for ethane with an experimental-to-calculated ratio of 3.0. Even then, the DFT estimate was within the experimental error. Furthermore, the approach managed to capture a wide range of empirical parameters as well as distinguish between monomers with close values. This robust and computationally inexpensive method can be applied to elucidate the reactivity of much larger species of industrial importance and rationally design the next generation of branching and chain-transfer agents for low density polyethylene (LDPE) systems.
This work emphasizes the importance of considering multiple reaction pathways when estimating the rate parameters for free radical polymerization using DFT. |
doi_str_mv | 10.1039/c7me00087a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C7ME00087A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010866665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-f39fec712451d9d7a954fea40a69097417adb4d87af7e731d0cd24de086721b83</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhoMoWGov3oWAFxVWk_3K5lj6oUJFD_W8pMmk3dImNcke9uovN25FncvMyzwz8M4gdEnJPSUZf5BsD4SQiokTNEhJUSW8rPjpv_ocjbzfRoaWVZkW5QB9jqVsnQiAFRjfhA7r1sjQWCN2OGzAug7fTOfLW3xwNlhpd1hbh710AKYxayyMiqO-WfdKbkRjcHDCeA2ub66ikJseXYMJvp9fTN9m2Hc-wN5foDMtdh5GP3mI3uez5eQpWbw-Pk_Gi0SmFQ2JzrgGyWiaF1RxxQQvcg0iJ6LkhLOcMqFWuYruNQOWUUWkSnMFpCpZSldVNkTXx73RyUcLPtRb27ro09cpoRGLUUTq7khJZ713oOuDa_bCdTUl9feZ6wl7mfVnHkf46gg7L3-5vzdkX3SferQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010866665</pqid></control><display><type>article</type><title>Accurate density functional theory (DFT) protocol for screening and designing chain transfer and branching agents for LDPE systems</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Konstantinov, Ivan ; Ewart, Sean ; Brown, Hayley ; Eddy, Christopher ; Mendenhall, Jonathan ; Munjal, Sarat</creator><creatorcontrib>Konstantinov, Ivan ; Ewart, Sean ; Brown, Hayley ; Eddy, Christopher ; Mendenhall, Jonathan ; Munjal, Sarat</creatorcontrib><description>In this work, a density functional theory (DFT) methodology was developed and validated against experimental data for relative hydrogen abstraction (
C
s
) and monomer reactivity ratio (
r
1
) parameters associated with free radical polymerization. For hydrogen abstraction, we considered ethane, cyclohexane, 2-butanone, propylene, isobutene, isobutane and propanal while methyl methacrylate, vinyl acetate, 1-butene, propylene and isobutene were the molecules of choice for benchmarking
r
1
. It was shown that the M06-2X/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level of theory along with the counterpoise correction for the basis set superposition error (BSSE) produced estimated values in excellent agreement with experimental data. The calculated parameters were within a factor of 1.5 from the experimental values. This translated into a maximum error of 0.32 kcal mol
−1
in Gibbs free energy of activation difference. The only exception was
C
s
for ethane with an experimental-to-calculated ratio of 3.0. Even then, the DFT estimate was within the experimental error. Furthermore, the approach managed to capture a wide range of empirical parameters as well as distinguish between monomers with close values. This robust and computationally inexpensive method can be applied to elucidate the reactivity of much larger species of industrial importance and rationally design the next generation of branching and chain-transfer agents for low density polyethylene (LDPE) systems.
This work emphasizes the importance of considering multiple reaction pathways when estimating the rate parameters for free radical polymerization using DFT.</description><identifier>ISSN: 2058-9689</identifier><identifier>EISSN: 2058-9689</identifier><identifier>DOI: 10.1039/c7me00087a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activation energy ; Chain branching ; Chain transfer ; Cyclohexane ; Density functional theory ; Error correction ; Ethane ; Free energy ; Free radical polymerization ; Free radicals ; Gibbs free energy ; Low density polyethylenes ; Mathematical analysis ; Monomers ; Parameters ; Polymethyl methacrylate ; Propylene ; Superposition (mathematics) ; Vinyl acetate</subject><ispartof>Molecular systems design & engineering, 2018-02, Vol.3 (1), p.228-242</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-f39fec712451d9d7a954fea40a69097417adb4d87af7e731d0cd24de086721b83</citedby><cites>FETCH-LOGICAL-c281t-f39fec712451d9d7a954fea40a69097417adb4d87af7e731d0cd24de086721b83</cites><orcidid>0000-0002-8265-3974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Konstantinov, Ivan</creatorcontrib><creatorcontrib>Ewart, Sean</creatorcontrib><creatorcontrib>Brown, Hayley</creatorcontrib><creatorcontrib>Eddy, Christopher</creatorcontrib><creatorcontrib>Mendenhall, Jonathan</creatorcontrib><creatorcontrib>Munjal, Sarat</creatorcontrib><title>Accurate density functional theory (DFT) protocol for screening and designing chain transfer and branching agents for LDPE systems</title><title>Molecular systems design & engineering</title><description>In this work, a density functional theory (DFT) methodology was developed and validated against experimental data for relative hydrogen abstraction (
C
s
) and monomer reactivity ratio (
r
1
) parameters associated with free radical polymerization. For hydrogen abstraction, we considered ethane, cyclohexane, 2-butanone, propylene, isobutene, isobutane and propanal while methyl methacrylate, vinyl acetate, 1-butene, propylene and isobutene were the molecules of choice for benchmarking
r
1
. It was shown that the M06-2X/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level of theory along with the counterpoise correction for the basis set superposition error (BSSE) produced estimated values in excellent agreement with experimental data. The calculated parameters were within a factor of 1.5 from the experimental values. This translated into a maximum error of 0.32 kcal mol
−1
in Gibbs free energy of activation difference. The only exception was
C
s
for ethane with an experimental-to-calculated ratio of 3.0. Even then, the DFT estimate was within the experimental error. Furthermore, the approach managed to capture a wide range of empirical parameters as well as distinguish between monomers with close values. This robust and computationally inexpensive method can be applied to elucidate the reactivity of much larger species of industrial importance and rationally design the next generation of branching and chain-transfer agents for low density polyethylene (LDPE) systems.
This work emphasizes the importance of considering multiple reaction pathways when estimating the rate parameters for free radical polymerization using DFT.</description><subject>Activation energy</subject><subject>Chain branching</subject><subject>Chain transfer</subject><subject>Cyclohexane</subject><subject>Density functional theory</subject><subject>Error correction</subject><subject>Ethane</subject><subject>Free energy</subject><subject>Free radical polymerization</subject><subject>Free radicals</subject><subject>Gibbs free energy</subject><subject>Low density polyethylenes</subject><subject>Mathematical analysis</subject><subject>Monomers</subject><subject>Parameters</subject><subject>Polymethyl methacrylate</subject><subject>Propylene</subject><subject>Superposition (mathematics)</subject><subject>Vinyl acetate</subject><issn>2058-9689</issn><issn>2058-9689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkU1LAzEQhoMoWGov3oWAFxVWk_3K5lj6oUJFD_W8pMmk3dImNcke9uovN25FncvMyzwz8M4gdEnJPSUZf5BsD4SQiokTNEhJUSW8rPjpv_ocjbzfRoaWVZkW5QB9jqVsnQiAFRjfhA7r1sjQWCN2OGzAug7fTOfLW3xwNlhpd1hbh710AKYxayyMiqO-WfdKbkRjcHDCeA2ub66ikJseXYMJvp9fTN9m2Hc-wN5foDMtdh5GP3mI3uez5eQpWbw-Pk_Gi0SmFQ2JzrgGyWiaF1RxxQQvcg0iJ6LkhLOcMqFWuYruNQOWUUWkSnMFpCpZSldVNkTXx73RyUcLPtRb27ro09cpoRGLUUTq7khJZ713oOuDa_bCdTUl9feZ6wl7mfVnHkf46gg7L3-5vzdkX3SferQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Konstantinov, Ivan</creator><creator>Ewart, Sean</creator><creator>Brown, Hayley</creator><creator>Eddy, Christopher</creator><creator>Mendenhall, Jonathan</creator><creator>Munjal, Sarat</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8265-3974</orcidid></search><sort><creationdate>20180201</creationdate><title>Accurate density functional theory (DFT) protocol for screening and designing chain transfer and branching agents for LDPE systems</title><author>Konstantinov, Ivan ; Ewart, Sean ; Brown, Hayley ; Eddy, Christopher ; Mendenhall, Jonathan ; Munjal, Sarat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-f39fec712451d9d7a954fea40a69097417adb4d87af7e731d0cd24de086721b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation energy</topic><topic>Chain branching</topic><topic>Chain transfer</topic><topic>Cyclohexane</topic><topic>Density functional theory</topic><topic>Error correction</topic><topic>Ethane</topic><topic>Free energy</topic><topic>Free radical polymerization</topic><topic>Free radicals</topic><topic>Gibbs free energy</topic><topic>Low density polyethylenes</topic><topic>Mathematical analysis</topic><topic>Monomers</topic><topic>Parameters</topic><topic>Polymethyl methacrylate</topic><topic>Propylene</topic><topic>Superposition (mathematics)</topic><topic>Vinyl acetate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konstantinov, Ivan</creatorcontrib><creatorcontrib>Ewart, Sean</creatorcontrib><creatorcontrib>Brown, Hayley</creatorcontrib><creatorcontrib>Eddy, Christopher</creatorcontrib><creatorcontrib>Mendenhall, Jonathan</creatorcontrib><creatorcontrib>Munjal, Sarat</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Molecular systems design & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konstantinov, Ivan</au><au>Ewart, Sean</au><au>Brown, Hayley</au><au>Eddy, Christopher</au><au>Mendenhall, Jonathan</au><au>Munjal, Sarat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate density functional theory (DFT) protocol for screening and designing chain transfer and branching agents for LDPE systems</atitle><jtitle>Molecular systems design & engineering</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>3</volume><issue>1</issue><spage>228</spage><epage>242</epage><pages>228-242</pages><issn>2058-9689</issn><eissn>2058-9689</eissn><abstract>In this work, a density functional theory (DFT) methodology was developed and validated against experimental data for relative hydrogen abstraction (
C
s
) and monomer reactivity ratio (
r
1
) parameters associated with free radical polymerization. For hydrogen abstraction, we considered ethane, cyclohexane, 2-butanone, propylene, isobutene, isobutane and propanal while methyl methacrylate, vinyl acetate, 1-butene, propylene and isobutene were the molecules of choice for benchmarking
r
1
. It was shown that the M06-2X/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level of theory along with the counterpoise correction for the basis set superposition error (BSSE) produced estimated values in excellent agreement with experimental data. The calculated parameters were within a factor of 1.5 from the experimental values. This translated into a maximum error of 0.32 kcal mol
−1
in Gibbs free energy of activation difference. The only exception was
C
s
for ethane with an experimental-to-calculated ratio of 3.0. Even then, the DFT estimate was within the experimental error. Furthermore, the approach managed to capture a wide range of empirical parameters as well as distinguish between monomers with close values. This robust and computationally inexpensive method can be applied to elucidate the reactivity of much larger species of industrial importance and rationally design the next generation of branching and chain-transfer agents for low density polyethylene (LDPE) systems.
This work emphasizes the importance of considering multiple reaction pathways when estimating the rate parameters for free radical polymerization using DFT.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7me00087a</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8265-3974</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-9689 |
ispartof | Molecular systems design & engineering, 2018-02, Vol.3 (1), p.228-242 |
issn | 2058-9689 2058-9689 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C7ME00087A |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Activation energy Chain branching Chain transfer Cyclohexane Density functional theory Error correction Ethane Free energy Free radical polymerization Free radicals Gibbs free energy Low density polyethylenes Mathematical analysis Monomers Parameters Polymethyl methacrylate Propylene Superposition (mathematics) Vinyl acetate |
title | Accurate density functional theory (DFT) protocol for screening and designing chain transfer and branching agents for LDPE systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20density%20functional%20theory%20(DFT)%20protocol%20for%20screening%20and%20designing%20chain%20transfer%20and%20branching%20agents%20for%20LDPE%20systems&rft.jtitle=Molecular%20systems%20design%20&%20engineering&rft.au=Konstantinov,%20Ivan&rft.date=2018-02-01&rft.volume=3&rft.issue=1&rft.spage=228&rft.epage=242&rft.pages=228-242&rft.issn=2058-9689&rft.eissn=2058-9689&rft_id=info:doi/10.1039/c7me00087a&rft_dat=%3Cproquest_cross%3E2010866665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010866665&rft_id=info:pmid/&rfr_iscdi=true |