Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics
In contrast to typical magnetic energy generators that use electromagnetic induction, which are bulky and have low generation efficiency under small magnetic fields at low frequency, magneto-mechano-electric (MME) generators utilizing the magnetoelectric (ME) coupling effect and magnetic interaction...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2018-01, Vol.11 (4), p.818-829 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 829 |
---|---|
container_issue | 4 |
container_start_page | 818 |
container_title | Energy & environmental science |
container_volume | 11 |
creator | Annapureddy, Venkateswarlu Na, Suok-Min Hwang, Geon-Tae Kang, Min Gyu Sriramdas, Rammohan Palneedi, Haribabu Yoon, Woon-Ha Hahn, Byung-Dong Kim, Jong-Woo Ahn, Cheol-Woo Park, Dong-Soo Choi, Jong-Jin Jeong, Dae-Yong Flatau, Alison B Peddigari, Mahesh Priya, Shashank Kim, Kwang-Ho Ryu, Jungho |
description | In contrast to typical magnetic energy generators that use electromagnetic induction, which are bulky and have low generation efficiency under small magnetic fields at low frequency, magneto-mechano-electric (MME) generators utilizing the magnetoelectric (ME) coupling effect and magnetic interactions are considered promising candidates. MME generators will serve as a ubiquitous autonomous energy source converting stray magnetic noise to useful electric energy for applications in wireless sensor networks (WSN) for the Internet of Things (IoT) and low-power-consuming electronics. The key component in a MME generator is the ME composite consisting of piezoelectric and magnetostrictive materials, which elastically couples the electric and magnetic behaviour of the respective constituent. Here, we report a MME generator consisting of a crystallographically oriented Pb(Mg
1/3
Nb
2/3
)O
3
-Pb(Zr,Ti)O
3
piezoelectric single crystal macro-fibre composite and a highly textured magnetostrictive Fe-Ga alloy, which exhibits an exceptionally high rectified DC output power density of 3.22 mW cm
−3
. The large energy generation in this structure is ascribed to the coupling between the strong anisotropic properties of the piezoelectric single crystal fibres and textured Fe-Ga magnetostrictive alloy. A smart watch with IoT sensors was driven by the MME generator under a 700 μT magnetic field.
A MME generator with a textured Fe-Ga alloy can generate over 1 mW power under a tiny magnetic field. |
doi_str_mv | 10.1039/c7ee03429f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C7EE03429F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027146822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-44535aa10415c157bb1ff5bccdaba4abaf0201dded22bfd481acad9834088c873</originalsourceid><addsrcrecordid>eNpFkctLAzEQxoMoWB8X78KiN2E1r30dpbQqFLzoOWQns3XLNqlJSvW_N3Z9HD5mGH4zfHxDyAWjt4yK5g4qRCokb7oDMmFVIfOiouXhb182_JichLCitOS0aiYEZh-AaHq7zNb9MPT5TseYbdwO_X6mlxajy9cIb9q6HAeE6HvIlmjR6-h81iWFqK3Rg7OY71fRZCPpbA_hjBx1egh4_lNPyet89jJ9zBfPD0_T-0UOoi5jLmUhCq0ZlawAVlRty7quaAGMbrVM6iinzBg0nLedkTXToE1TC0nrGupKnJKr8a4LsVcB-phcg7M2OVGsEE0jRIKuR2jj3fsWQ1Qrt_U2-VKc8orJsuY8UTcjBd6F4LFTG9-vtf9UjKrvpNW0ms32Sc8TfDnCPsAf9_8J8QV8THzE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027146822</pqid></control><display><type>article</type><title>Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Annapureddy, Venkateswarlu ; Na, Suok-Min ; Hwang, Geon-Tae ; Kang, Min Gyu ; Sriramdas, Rammohan ; Palneedi, Haribabu ; Yoon, Woon-Ha ; Hahn, Byung-Dong ; Kim, Jong-Woo ; Ahn, Cheol-Woo ; Park, Dong-Soo ; Choi, Jong-Jin ; Jeong, Dae-Yong ; Flatau, Alison B ; Peddigari, Mahesh ; Priya, Shashank ; Kim, Kwang-Ho ; Ryu, Jungho</creator><creatorcontrib>Annapureddy, Venkateswarlu ; Na, Suok-Min ; Hwang, Geon-Tae ; Kang, Min Gyu ; Sriramdas, Rammohan ; Palneedi, Haribabu ; Yoon, Woon-Ha ; Hahn, Byung-Dong ; Kim, Jong-Woo ; Ahn, Cheol-Woo ; Park, Dong-Soo ; Choi, Jong-Jin ; Jeong, Dae-Yong ; Flatau, Alison B ; Peddigari, Mahesh ; Priya, Shashank ; Kim, Kwang-Ho ; Ryu, Jungho ; Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><description>In contrast to typical magnetic energy generators that use electromagnetic induction, which are bulky and have low generation efficiency under small magnetic fields at low frequency, magneto-mechano-electric (MME) generators utilizing the magnetoelectric (ME) coupling effect and magnetic interactions are considered promising candidates. MME generators will serve as a ubiquitous autonomous energy source converting stray magnetic noise to useful electric energy for applications in wireless sensor networks (WSN) for the Internet of Things (IoT) and low-power-consuming electronics. The key component in a MME generator is the ME composite consisting of piezoelectric and magnetostrictive materials, which elastically couples the electric and magnetic behaviour of the respective constituent. Here, we report a MME generator consisting of a crystallographically oriented Pb(Mg
1/3
Nb
2/3
)O
3
-Pb(Zr,Ti)O
3
piezoelectric single crystal macro-fibre composite and a highly textured magnetostrictive Fe-Ga alloy, which exhibits an exceptionally high rectified DC output power density of 3.22 mW cm
−3
. The large energy generation in this structure is ascribed to the coupling between the strong anisotropic properties of the piezoelectric single crystal fibres and textured Fe-Ga magnetostrictive alloy. A smart watch with IoT sensors was driven by the MME generator under a 700 μT magnetic field.
A MME generator with a textured Fe-Ga alloy can generate over 1 mW power under a tiny magnetic field.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c7ee03429f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Coupling ; Crystal fibers ; Crystallography ; Electric generators ; Electromagnetic induction ; Energy ; Energy & Fuels ; Engineering ; Environmental Sciences & Ecology ; Ferrous alloys ; Fiber composites ; Fibers ; Generators ; Internet of Things ; Iron ; Lead ; Lead zirconate titanates ; Magnetic fields ; Magnetic induction ; Magnetic properties ; Magnetostriction ; Piezoelectricity ; Power consumption ; Remote sensors ; Single crystals ; Smart sensors ; Wireless sensor networks ; Zirconium</subject><ispartof>Energy & environmental science, 2018-01, Vol.11 (4), p.818-829</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-44535aa10415c157bb1ff5bccdaba4abaf0201dded22bfd481acad9834088c873</citedby><cites>FETCH-LOGICAL-c386t-44535aa10415c157bb1ff5bccdaba4abaf0201dded22bfd481acad9834088c873</cites><orcidid>0000-0002-4746-5791 ; 0000-0001-9247-6476 ; 0000-0001-7401-717X ; 0000000270660616 ; 0000000247465791 ; 000000017401717X ; 0000000192476476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1539933$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Annapureddy, Venkateswarlu</creatorcontrib><creatorcontrib>Na, Suok-Min</creatorcontrib><creatorcontrib>Hwang, Geon-Tae</creatorcontrib><creatorcontrib>Kang, Min Gyu</creatorcontrib><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Palneedi, Haribabu</creatorcontrib><creatorcontrib>Yoon, Woon-Ha</creatorcontrib><creatorcontrib>Hahn, Byung-Dong</creatorcontrib><creatorcontrib>Kim, Jong-Woo</creatorcontrib><creatorcontrib>Ahn, Cheol-Woo</creatorcontrib><creatorcontrib>Park, Dong-Soo</creatorcontrib><creatorcontrib>Choi, Jong-Jin</creatorcontrib><creatorcontrib>Jeong, Dae-Yong</creatorcontrib><creatorcontrib>Flatau, Alison B</creatorcontrib><creatorcontrib>Peddigari, Mahesh</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><creatorcontrib>Kim, Kwang-Ho</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><title>Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics</title><title>Energy & environmental science</title><description>In contrast to typical magnetic energy generators that use electromagnetic induction, which are bulky and have low generation efficiency under small magnetic fields at low frequency, magneto-mechano-electric (MME) generators utilizing the magnetoelectric (ME) coupling effect and magnetic interactions are considered promising candidates. MME generators will serve as a ubiquitous autonomous energy source converting stray magnetic noise to useful electric energy for applications in wireless sensor networks (WSN) for the Internet of Things (IoT) and low-power-consuming electronics. The key component in a MME generator is the ME composite consisting of piezoelectric and magnetostrictive materials, which elastically couples the electric and magnetic behaviour of the respective constituent. Here, we report a MME generator consisting of a crystallographically oriented Pb(Mg
1/3
Nb
2/3
)O
3
-Pb(Zr,Ti)O
3
piezoelectric single crystal macro-fibre composite and a highly textured magnetostrictive Fe-Ga alloy, which exhibits an exceptionally high rectified DC output power density of 3.22 mW cm
−3
. The large energy generation in this structure is ascribed to the coupling between the strong anisotropic properties of the piezoelectric single crystal fibres and textured Fe-Ga magnetostrictive alloy. A smart watch with IoT sensors was driven by the MME generator under a 700 μT magnetic field.
A MME generator with a textured Fe-Ga alloy can generate over 1 mW power under a tiny magnetic field.</description><subject>Chemistry</subject><subject>Coupling</subject><subject>Crystal fibers</subject><subject>Crystallography</subject><subject>Electric generators</subject><subject>Electromagnetic induction</subject><subject>Energy</subject><subject>Energy & Fuels</subject><subject>Engineering</subject><subject>Environmental Sciences & Ecology</subject><subject>Ferrous alloys</subject><subject>Fiber composites</subject><subject>Fibers</subject><subject>Generators</subject><subject>Internet of Things</subject><subject>Iron</subject><subject>Lead</subject><subject>Lead zirconate titanates</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Magnetic properties</subject><subject>Magnetostriction</subject><subject>Piezoelectricity</subject><subject>Power consumption</subject><subject>Remote sensors</subject><subject>Single crystals</subject><subject>Smart sensors</subject><subject>Wireless sensor networks</subject><subject>Zirconium</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkctLAzEQxoMoWB8X78KiN2E1r30dpbQqFLzoOWQns3XLNqlJSvW_N3Z9HD5mGH4zfHxDyAWjt4yK5g4qRCokb7oDMmFVIfOiouXhb182_JichLCitOS0aiYEZh-AaHq7zNb9MPT5TseYbdwO_X6mlxajy9cIb9q6HAeE6HvIlmjR6-h81iWFqK3Rg7OY71fRZCPpbA_hjBx1egh4_lNPyet89jJ9zBfPD0_T-0UOoi5jLmUhCq0ZlawAVlRty7quaAGMbrVM6iinzBg0nLedkTXToE1TC0nrGupKnJKr8a4LsVcB-phcg7M2OVGsEE0jRIKuR2jj3fsWQ1Qrt_U2-VKc8orJsuY8UTcjBd6F4LFTG9-vtf9UjKrvpNW0ms32Sc8TfDnCPsAf9_8J8QV8THzE</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Annapureddy, Venkateswarlu</creator><creator>Na, Suok-Min</creator><creator>Hwang, Geon-Tae</creator><creator>Kang, Min Gyu</creator><creator>Sriramdas, Rammohan</creator><creator>Palneedi, Haribabu</creator><creator>Yoon, Woon-Ha</creator><creator>Hahn, Byung-Dong</creator><creator>Kim, Jong-Woo</creator><creator>Ahn, Cheol-Woo</creator><creator>Park, Dong-Soo</creator><creator>Choi, Jong-Jin</creator><creator>Jeong, Dae-Yong</creator><creator>Flatau, Alison B</creator><creator>Peddigari, Mahesh</creator><creator>Priya, Shashank</creator><creator>Kim, Kwang-Ho</creator><creator>Ryu, Jungho</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4746-5791</orcidid><orcidid>https://orcid.org/0000-0001-9247-6476</orcidid><orcidid>https://orcid.org/0000-0001-7401-717X</orcidid><orcidid>https://orcid.org/0000000270660616</orcidid><orcidid>https://orcid.org/0000000247465791</orcidid><orcidid>https://orcid.org/000000017401717X</orcidid><orcidid>https://orcid.org/0000000192476476</orcidid></search><sort><creationdate>20180101</creationdate><title>Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics</title><author>Annapureddy, Venkateswarlu ; Na, Suok-Min ; Hwang, Geon-Tae ; Kang, Min Gyu ; Sriramdas, Rammohan ; Palneedi, Haribabu ; Yoon, Woon-Ha ; Hahn, Byung-Dong ; Kim, Jong-Woo ; Ahn, Cheol-Woo ; Park, Dong-Soo ; Choi, Jong-Jin ; Jeong, Dae-Yong ; Flatau, Alison B ; Peddigari, Mahesh ; Priya, Shashank ; Kim, Kwang-Ho ; Ryu, Jungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-44535aa10415c157bb1ff5bccdaba4abaf0201dded22bfd481acad9834088c873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Coupling</topic><topic>Crystal fibers</topic><topic>Crystallography</topic><topic>Electric generators</topic><topic>Electromagnetic induction</topic><topic>Energy</topic><topic>Energy & Fuels</topic><topic>Engineering</topic><topic>Environmental Sciences & Ecology</topic><topic>Ferrous alloys</topic><topic>Fiber composites</topic><topic>Fibers</topic><topic>Generators</topic><topic>Internet of Things</topic><topic>Iron</topic><topic>Lead</topic><topic>Lead zirconate titanates</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Magnetic properties</topic><topic>Magnetostriction</topic><topic>Piezoelectricity</topic><topic>Power consumption</topic><topic>Remote sensors</topic><topic>Single crystals</topic><topic>Smart sensors</topic><topic>Wireless sensor networks</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Annapureddy, Venkateswarlu</creatorcontrib><creatorcontrib>Na, Suok-Min</creatorcontrib><creatorcontrib>Hwang, Geon-Tae</creatorcontrib><creatorcontrib>Kang, Min Gyu</creatorcontrib><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Palneedi, Haribabu</creatorcontrib><creatorcontrib>Yoon, Woon-Ha</creatorcontrib><creatorcontrib>Hahn, Byung-Dong</creatorcontrib><creatorcontrib>Kim, Jong-Woo</creatorcontrib><creatorcontrib>Ahn, Cheol-Woo</creatorcontrib><creatorcontrib>Park, Dong-Soo</creatorcontrib><creatorcontrib>Choi, Jong-Jin</creatorcontrib><creatorcontrib>Jeong, Dae-Yong</creatorcontrib><creatorcontrib>Flatau, Alison B</creatorcontrib><creatorcontrib>Peddigari, Mahesh</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><creatorcontrib>Kim, Kwang-Ho</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annapureddy, Venkateswarlu</au><au>Na, Suok-Min</au><au>Hwang, Geon-Tae</au><au>Kang, Min Gyu</au><au>Sriramdas, Rammohan</au><au>Palneedi, Haribabu</au><au>Yoon, Woon-Ha</au><au>Hahn, Byung-Dong</au><au>Kim, Jong-Woo</au><au>Ahn, Cheol-Woo</au><au>Park, Dong-Soo</au><au>Choi, Jong-Jin</au><au>Jeong, Dae-Yong</au><au>Flatau, Alison B</au><au>Peddigari, Mahesh</au><au>Priya, Shashank</au><au>Kim, Kwang-Ho</au><au>Ryu, Jungho</au><aucorp>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics</atitle><jtitle>Energy & environmental science</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>4</issue><spage>818</spage><epage>829</epage><pages>818-829</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>In contrast to typical magnetic energy generators that use electromagnetic induction, which are bulky and have low generation efficiency under small magnetic fields at low frequency, magneto-mechano-electric (MME) generators utilizing the magnetoelectric (ME) coupling effect and magnetic interactions are considered promising candidates. MME generators will serve as a ubiquitous autonomous energy source converting stray magnetic noise to useful electric energy for applications in wireless sensor networks (WSN) for the Internet of Things (IoT) and low-power-consuming electronics. The key component in a MME generator is the ME composite consisting of piezoelectric and magnetostrictive materials, which elastically couples the electric and magnetic behaviour of the respective constituent. Here, we report a MME generator consisting of a crystallographically oriented Pb(Mg
1/3
Nb
2/3
)O
3
-Pb(Zr,Ti)O
3
piezoelectric single crystal macro-fibre composite and a highly textured magnetostrictive Fe-Ga alloy, which exhibits an exceptionally high rectified DC output power density of 3.22 mW cm
−3
. The large energy generation in this structure is ascribed to the coupling between the strong anisotropic properties of the piezoelectric single crystal fibres and textured Fe-Ga magnetostrictive alloy. A smart watch with IoT sensors was driven by the MME generator under a 700 μT magnetic field.
A MME generator with a textured Fe-Ga alloy can generate over 1 mW power under a tiny magnetic field.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ee03429f</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4746-5791</orcidid><orcidid>https://orcid.org/0000-0001-9247-6476</orcidid><orcidid>https://orcid.org/0000-0001-7401-717X</orcidid><orcidid>https://orcid.org/0000000270660616</orcidid><orcidid>https://orcid.org/0000000247465791</orcidid><orcidid>https://orcid.org/000000017401717X</orcidid><orcidid>https://orcid.org/0000000192476476</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2018-01, Vol.11 (4), p.818-829 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C7EE03429F |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Chemistry Coupling Crystal fibers Crystallography Electric generators Electromagnetic induction Energy Energy & Fuels Engineering Environmental Sciences & Ecology Ferrous alloys Fiber composites Fibers Generators Internet of Things Iron Lead Lead zirconate titanates Magnetic fields Magnetic induction Magnetic properties Magnetostriction Piezoelectricity Power consumption Remote sensors Single crystals Smart sensors Wireless sensor networks Zirconium |
title | Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exceeding%20milli-watt%20powering%20magneto-mechano-electric%20generator%20for%20standalone-powered%20electronics&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Annapureddy,%20Venkateswarlu&rft.aucorp=Virginia%20Polytechnic%20Inst.%20and%20State%20Univ.%20(Virginia%20Tech),%20Blacksburg,%20VA%20(United%20States)&rft.date=2018-01-01&rft.volume=11&rft.issue=4&rft.spage=818&rft.epage=829&rft.pages=818-829&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c7ee03429f&rft_dat=%3Cproquest_cross%3E2027146822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027146822&rft_id=info:pmid/&rfr_iscdi=true |