Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics

In contrast to typical magnetic energy generators that use electromagnetic induction, which are bulky and have low generation efficiency under small magnetic fields at low frequency, magneto-mechano-electric (MME) generators utilizing the magnetoelectric (ME) coupling effect and magnetic interaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2018-01, Vol.11 (4), p.818-829
Hauptverfasser: Annapureddy, Venkateswarlu, Na, Suok-Min, Hwang, Geon-Tae, Kang, Min Gyu, Sriramdas, Rammohan, Palneedi, Haribabu, Yoon, Woon-Ha, Hahn, Byung-Dong, Kim, Jong-Woo, Ahn, Cheol-Woo, Park, Dong-Soo, Choi, Jong-Jin, Jeong, Dae-Yong, Flatau, Alison B, Peddigari, Mahesh, Priya, Shashank, Kim, Kwang-Ho, Ryu, Jungho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 829
container_issue 4
container_start_page 818
container_title Energy & environmental science
container_volume 11
creator Annapureddy, Venkateswarlu
Na, Suok-Min
Hwang, Geon-Tae
Kang, Min Gyu
Sriramdas, Rammohan
Palneedi, Haribabu
Yoon, Woon-Ha
Hahn, Byung-Dong
Kim, Jong-Woo
Ahn, Cheol-Woo
Park, Dong-Soo
Choi, Jong-Jin
Jeong, Dae-Yong
Flatau, Alison B
Peddigari, Mahesh
Priya, Shashank
Kim, Kwang-Ho
Ryu, Jungho
description In contrast to typical magnetic energy generators that use electromagnetic induction, which are bulky and have low generation efficiency under small magnetic fields at low frequency, magneto-mechano-electric (MME) generators utilizing the magnetoelectric (ME) coupling effect and magnetic interactions are considered promising candidates. MME generators will serve as a ubiquitous autonomous energy source converting stray magnetic noise to useful electric energy for applications in wireless sensor networks (WSN) for the Internet of Things (IoT) and low-power-consuming electronics. The key component in a MME generator is the ME composite consisting of piezoelectric and magnetostrictive materials, which elastically couples the electric and magnetic behaviour of the respective constituent. Here, we report a MME generator consisting of a crystallographically oriented Pb(Mg 1/3 Nb 2/3 )O 3 -Pb(Zr,Ti)O 3 piezoelectric single crystal macro-fibre composite and a highly textured magnetostrictive Fe-Ga alloy, which exhibits an exceptionally high rectified DC output power density of 3.22 mW cm −3 . The large energy generation in this structure is ascribed to the coupling between the strong anisotropic properties of the piezoelectric single crystal fibres and textured Fe-Ga magnetostrictive alloy. A smart watch with IoT sensors was driven by the MME generator under a 700 μT magnetic field. A MME generator with a textured Fe-Ga alloy can generate over 1 mW power under a tiny magnetic field.
doi_str_mv 10.1039/c7ee03429f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C7EE03429F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027146822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-44535aa10415c157bb1ff5bccdaba4abaf0201dded22bfd481acad9834088c873</originalsourceid><addsrcrecordid>eNpFkctLAzEQxoMoWB8X78KiN2E1r30dpbQqFLzoOWQns3XLNqlJSvW_N3Z9HD5mGH4zfHxDyAWjt4yK5g4qRCokb7oDMmFVIfOiouXhb182_JichLCitOS0aiYEZh-AaHq7zNb9MPT5TseYbdwO_X6mlxajy9cIb9q6HAeE6HvIlmjR6-h81iWFqK3Rg7OY71fRZCPpbA_hjBx1egh4_lNPyet89jJ9zBfPD0_T-0UOoi5jLmUhCq0ZlawAVlRty7quaAGMbrVM6iinzBg0nLedkTXToE1TC0nrGupKnJKr8a4LsVcB-phcg7M2OVGsEE0jRIKuR2jj3fsWQ1Qrt_U2-VKc8orJsuY8UTcjBd6F4LFTG9-vtf9UjKrvpNW0ms32Sc8TfDnCPsAf9_8J8QV8THzE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027146822</pqid></control><display><type>article</type><title>Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Annapureddy, Venkateswarlu ; Na, Suok-Min ; Hwang, Geon-Tae ; Kang, Min Gyu ; Sriramdas, Rammohan ; Palneedi, Haribabu ; Yoon, Woon-Ha ; Hahn, Byung-Dong ; Kim, Jong-Woo ; Ahn, Cheol-Woo ; Park, Dong-Soo ; Choi, Jong-Jin ; Jeong, Dae-Yong ; Flatau, Alison B ; Peddigari, Mahesh ; Priya, Shashank ; Kim, Kwang-Ho ; Ryu, Jungho</creator><creatorcontrib>Annapureddy, Venkateswarlu ; Na, Suok-Min ; Hwang, Geon-Tae ; Kang, Min Gyu ; Sriramdas, Rammohan ; Palneedi, Haribabu ; Yoon, Woon-Ha ; Hahn, Byung-Dong ; Kim, Jong-Woo ; Ahn, Cheol-Woo ; Park, Dong-Soo ; Choi, Jong-Jin ; Jeong, Dae-Yong ; Flatau, Alison B ; Peddigari, Mahesh ; Priya, Shashank ; Kim, Kwang-Ho ; Ryu, Jungho ; Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><description>In contrast to typical magnetic energy generators that use electromagnetic induction, which are bulky and have low generation efficiency under small magnetic fields at low frequency, magneto-mechano-electric (MME) generators utilizing the magnetoelectric (ME) coupling effect and magnetic interactions are considered promising candidates. MME generators will serve as a ubiquitous autonomous energy source converting stray magnetic noise to useful electric energy for applications in wireless sensor networks (WSN) for the Internet of Things (IoT) and low-power-consuming electronics. The key component in a MME generator is the ME composite consisting of piezoelectric and magnetostrictive materials, which elastically couples the electric and magnetic behaviour of the respective constituent. Here, we report a MME generator consisting of a crystallographically oriented Pb(Mg 1/3 Nb 2/3 )O 3 -Pb(Zr,Ti)O 3 piezoelectric single crystal macro-fibre composite and a highly textured magnetostrictive Fe-Ga alloy, which exhibits an exceptionally high rectified DC output power density of 3.22 mW cm −3 . The large energy generation in this structure is ascribed to the coupling between the strong anisotropic properties of the piezoelectric single crystal fibres and textured Fe-Ga magnetostrictive alloy. A smart watch with IoT sensors was driven by the MME generator under a 700 μT magnetic field. A MME generator with a textured Fe-Ga alloy can generate over 1 mW power under a tiny magnetic field.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c7ee03429f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Coupling ; Crystal fibers ; Crystallography ; Electric generators ; Electromagnetic induction ; Energy ; Energy &amp; Fuels ; Engineering ; Environmental Sciences &amp; Ecology ; Ferrous alloys ; Fiber composites ; Fibers ; Generators ; Internet of Things ; Iron ; Lead ; Lead zirconate titanates ; Magnetic fields ; Magnetic induction ; Magnetic properties ; Magnetostriction ; Piezoelectricity ; Power consumption ; Remote sensors ; Single crystals ; Smart sensors ; Wireless sensor networks ; Zirconium</subject><ispartof>Energy &amp; environmental science, 2018-01, Vol.11 (4), p.818-829</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-44535aa10415c157bb1ff5bccdaba4abaf0201dded22bfd481acad9834088c873</citedby><cites>FETCH-LOGICAL-c386t-44535aa10415c157bb1ff5bccdaba4abaf0201dded22bfd481acad9834088c873</cites><orcidid>0000-0002-4746-5791 ; 0000-0001-9247-6476 ; 0000-0001-7401-717X ; 0000000270660616 ; 0000000247465791 ; 000000017401717X ; 0000000192476476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1539933$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Annapureddy, Venkateswarlu</creatorcontrib><creatorcontrib>Na, Suok-Min</creatorcontrib><creatorcontrib>Hwang, Geon-Tae</creatorcontrib><creatorcontrib>Kang, Min Gyu</creatorcontrib><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Palneedi, Haribabu</creatorcontrib><creatorcontrib>Yoon, Woon-Ha</creatorcontrib><creatorcontrib>Hahn, Byung-Dong</creatorcontrib><creatorcontrib>Kim, Jong-Woo</creatorcontrib><creatorcontrib>Ahn, Cheol-Woo</creatorcontrib><creatorcontrib>Park, Dong-Soo</creatorcontrib><creatorcontrib>Choi, Jong-Jin</creatorcontrib><creatorcontrib>Jeong, Dae-Yong</creatorcontrib><creatorcontrib>Flatau, Alison B</creatorcontrib><creatorcontrib>Peddigari, Mahesh</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><creatorcontrib>Kim, Kwang-Ho</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><title>Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics</title><title>Energy &amp; environmental science</title><description>In contrast to typical magnetic energy generators that use electromagnetic induction, which are bulky and have low generation efficiency under small magnetic fields at low frequency, magneto-mechano-electric (MME) generators utilizing the magnetoelectric (ME) coupling effect and magnetic interactions are considered promising candidates. MME generators will serve as a ubiquitous autonomous energy source converting stray magnetic noise to useful electric energy for applications in wireless sensor networks (WSN) for the Internet of Things (IoT) and low-power-consuming electronics. The key component in a MME generator is the ME composite consisting of piezoelectric and magnetostrictive materials, which elastically couples the electric and magnetic behaviour of the respective constituent. Here, we report a MME generator consisting of a crystallographically oriented Pb(Mg 1/3 Nb 2/3 )O 3 -Pb(Zr,Ti)O 3 piezoelectric single crystal macro-fibre composite and a highly textured magnetostrictive Fe-Ga alloy, which exhibits an exceptionally high rectified DC output power density of 3.22 mW cm −3 . The large energy generation in this structure is ascribed to the coupling between the strong anisotropic properties of the piezoelectric single crystal fibres and textured Fe-Ga magnetostrictive alloy. A smart watch with IoT sensors was driven by the MME generator under a 700 μT magnetic field. A MME generator with a textured Fe-Ga alloy can generate over 1 mW power under a tiny magnetic field.</description><subject>Chemistry</subject><subject>Coupling</subject><subject>Crystal fibers</subject><subject>Crystallography</subject><subject>Electric generators</subject><subject>Electromagnetic induction</subject><subject>Energy</subject><subject>Energy &amp; Fuels</subject><subject>Engineering</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Ferrous alloys</subject><subject>Fiber composites</subject><subject>Fibers</subject><subject>Generators</subject><subject>Internet of Things</subject><subject>Iron</subject><subject>Lead</subject><subject>Lead zirconate titanates</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Magnetic properties</subject><subject>Magnetostriction</subject><subject>Piezoelectricity</subject><subject>Power consumption</subject><subject>Remote sensors</subject><subject>Single crystals</subject><subject>Smart sensors</subject><subject>Wireless sensor networks</subject><subject>Zirconium</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkctLAzEQxoMoWB8X78KiN2E1r30dpbQqFLzoOWQns3XLNqlJSvW_N3Z9HD5mGH4zfHxDyAWjt4yK5g4qRCokb7oDMmFVIfOiouXhb182_JichLCitOS0aiYEZh-AaHq7zNb9MPT5TseYbdwO_X6mlxajy9cIb9q6HAeE6HvIlmjR6-h81iWFqK3Rg7OY71fRZCPpbA_hjBx1egh4_lNPyet89jJ9zBfPD0_T-0UOoi5jLmUhCq0ZlawAVlRty7quaAGMbrVM6iinzBg0nLedkTXToE1TC0nrGupKnJKr8a4LsVcB-phcg7M2OVGsEE0jRIKuR2jj3fsWQ1Qrt_U2-VKc8orJsuY8UTcjBd6F4LFTG9-vtf9UjKrvpNW0ms32Sc8TfDnCPsAf9_8J8QV8THzE</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Annapureddy, Venkateswarlu</creator><creator>Na, Suok-Min</creator><creator>Hwang, Geon-Tae</creator><creator>Kang, Min Gyu</creator><creator>Sriramdas, Rammohan</creator><creator>Palneedi, Haribabu</creator><creator>Yoon, Woon-Ha</creator><creator>Hahn, Byung-Dong</creator><creator>Kim, Jong-Woo</creator><creator>Ahn, Cheol-Woo</creator><creator>Park, Dong-Soo</creator><creator>Choi, Jong-Jin</creator><creator>Jeong, Dae-Yong</creator><creator>Flatau, Alison B</creator><creator>Peddigari, Mahesh</creator><creator>Priya, Shashank</creator><creator>Kim, Kwang-Ho</creator><creator>Ryu, Jungho</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4746-5791</orcidid><orcidid>https://orcid.org/0000-0001-9247-6476</orcidid><orcidid>https://orcid.org/0000-0001-7401-717X</orcidid><orcidid>https://orcid.org/0000000270660616</orcidid><orcidid>https://orcid.org/0000000247465791</orcidid><orcidid>https://orcid.org/000000017401717X</orcidid><orcidid>https://orcid.org/0000000192476476</orcidid></search><sort><creationdate>20180101</creationdate><title>Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics</title><author>Annapureddy, Venkateswarlu ; Na, Suok-Min ; Hwang, Geon-Tae ; Kang, Min Gyu ; Sriramdas, Rammohan ; Palneedi, Haribabu ; Yoon, Woon-Ha ; Hahn, Byung-Dong ; Kim, Jong-Woo ; Ahn, Cheol-Woo ; Park, Dong-Soo ; Choi, Jong-Jin ; Jeong, Dae-Yong ; Flatau, Alison B ; Peddigari, Mahesh ; Priya, Shashank ; Kim, Kwang-Ho ; Ryu, Jungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-44535aa10415c157bb1ff5bccdaba4abaf0201dded22bfd481acad9834088c873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Coupling</topic><topic>Crystal fibers</topic><topic>Crystallography</topic><topic>Electric generators</topic><topic>Electromagnetic induction</topic><topic>Energy</topic><topic>Energy &amp; Fuels</topic><topic>Engineering</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Ferrous alloys</topic><topic>Fiber composites</topic><topic>Fibers</topic><topic>Generators</topic><topic>Internet of Things</topic><topic>Iron</topic><topic>Lead</topic><topic>Lead zirconate titanates</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Magnetic properties</topic><topic>Magnetostriction</topic><topic>Piezoelectricity</topic><topic>Power consumption</topic><topic>Remote sensors</topic><topic>Single crystals</topic><topic>Smart sensors</topic><topic>Wireless sensor networks</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Annapureddy, Venkateswarlu</creatorcontrib><creatorcontrib>Na, Suok-Min</creatorcontrib><creatorcontrib>Hwang, Geon-Tae</creatorcontrib><creatorcontrib>Kang, Min Gyu</creatorcontrib><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Palneedi, Haribabu</creatorcontrib><creatorcontrib>Yoon, Woon-Ha</creatorcontrib><creatorcontrib>Hahn, Byung-Dong</creatorcontrib><creatorcontrib>Kim, Jong-Woo</creatorcontrib><creatorcontrib>Ahn, Cheol-Woo</creatorcontrib><creatorcontrib>Park, Dong-Soo</creatorcontrib><creatorcontrib>Choi, Jong-Jin</creatorcontrib><creatorcontrib>Jeong, Dae-Yong</creatorcontrib><creatorcontrib>Flatau, Alison B</creatorcontrib><creatorcontrib>Peddigari, Mahesh</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><creatorcontrib>Kim, Kwang-Ho</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annapureddy, Venkateswarlu</au><au>Na, Suok-Min</au><au>Hwang, Geon-Tae</au><au>Kang, Min Gyu</au><au>Sriramdas, Rammohan</au><au>Palneedi, Haribabu</au><au>Yoon, Woon-Ha</au><au>Hahn, Byung-Dong</au><au>Kim, Jong-Woo</au><au>Ahn, Cheol-Woo</au><au>Park, Dong-Soo</au><au>Choi, Jong-Jin</au><au>Jeong, Dae-Yong</au><au>Flatau, Alison B</au><au>Peddigari, Mahesh</au><au>Priya, Shashank</au><au>Kim, Kwang-Ho</au><au>Ryu, Jungho</au><aucorp>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>4</issue><spage>818</spage><epage>829</epage><pages>818-829</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>In contrast to typical magnetic energy generators that use electromagnetic induction, which are bulky and have low generation efficiency under small magnetic fields at low frequency, magneto-mechano-electric (MME) generators utilizing the magnetoelectric (ME) coupling effect and magnetic interactions are considered promising candidates. MME generators will serve as a ubiquitous autonomous energy source converting stray magnetic noise to useful electric energy for applications in wireless sensor networks (WSN) for the Internet of Things (IoT) and low-power-consuming electronics. The key component in a MME generator is the ME composite consisting of piezoelectric and magnetostrictive materials, which elastically couples the electric and magnetic behaviour of the respective constituent. Here, we report a MME generator consisting of a crystallographically oriented Pb(Mg 1/3 Nb 2/3 )O 3 -Pb(Zr,Ti)O 3 piezoelectric single crystal macro-fibre composite and a highly textured magnetostrictive Fe-Ga alloy, which exhibits an exceptionally high rectified DC output power density of 3.22 mW cm −3 . The large energy generation in this structure is ascribed to the coupling between the strong anisotropic properties of the piezoelectric single crystal fibres and textured Fe-Ga magnetostrictive alloy. A smart watch with IoT sensors was driven by the MME generator under a 700 μT magnetic field. A MME generator with a textured Fe-Ga alloy can generate over 1 mW power under a tiny magnetic field.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ee03429f</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4746-5791</orcidid><orcidid>https://orcid.org/0000-0001-9247-6476</orcidid><orcidid>https://orcid.org/0000-0001-7401-717X</orcidid><orcidid>https://orcid.org/0000000270660616</orcidid><orcidid>https://orcid.org/0000000247465791</orcidid><orcidid>https://orcid.org/000000017401717X</orcidid><orcidid>https://orcid.org/0000000192476476</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2018-01, Vol.11 (4), p.818-829
issn 1754-5692
1754-5706
language eng
recordid cdi_crossref_primary_10_1039_C7EE03429F
source Royal Society Of Chemistry Journals 2008-
subjects Chemistry
Coupling
Crystal fibers
Crystallography
Electric generators
Electromagnetic induction
Energy
Energy & Fuels
Engineering
Environmental Sciences & Ecology
Ferrous alloys
Fiber composites
Fibers
Generators
Internet of Things
Iron
Lead
Lead zirconate titanates
Magnetic fields
Magnetic induction
Magnetic properties
Magnetostriction
Piezoelectricity
Power consumption
Remote sensors
Single crystals
Smart sensors
Wireless sensor networks
Zirconium
title Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exceeding%20milli-watt%20powering%20magneto-mechano-electric%20generator%20for%20standalone-powered%20electronics&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Annapureddy,%20Venkateswarlu&rft.aucorp=Virginia%20Polytechnic%20Inst.%20and%20State%20Univ.%20(Virginia%20Tech),%20Blacksburg,%20VA%20(United%20States)&rft.date=2018-01-01&rft.volume=11&rft.issue=4&rft.spage=818&rft.epage=829&rft.pages=818-829&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c7ee03429f&rft_dat=%3Cproquest_cross%3E2027146822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027146822&rft_id=info:pmid/&rfr_iscdi=true