Au 26 : a case of fluxionality/co-existence

The Au26 cluster is one of the widely studied gold clusters in the size range of n = 21-30. It has been proposed in a more recent combined experimental and theoretical study that the neutral Au26 cluster is fluxional. The fluxionality of a cluster is relevant to its catalytic applications. In this c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018-04, Vol.20 (13), p.8616-8623
Hauptverfasser: Joshi, Krati, Krishnamurty, Sailaja
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8623
container_issue 13
container_start_page 8616
container_title Physical chemistry chemical physics : PCCP
container_volume 20
creator Joshi, Krati
Krishnamurty, Sailaja
description The Au26 cluster is one of the widely studied gold clusters in the size range of n = 21-30. It has been proposed in a more recent combined experimental and theoretical study that the neutral Au26 cluster is fluxional. The fluxionality of a cluster is relevant to its catalytic applications. In this context, to explore the extent of fluxionality, Born Oppenheimer Molecular Dynamical (BOMD) simulations are carried out on experimentally and theoretically proposed fluxional Au26 conformations (three compact or core-shell structures and a high symmetry cage structure). The simulations reveal that the high energy golden tube outperforms the ground state structure (compact C2v conformation) as well as the other two low-symmetry compact conformations in terms of thermal stability. The enhancement in the thermal stability is explained on the basis of structural integrity imposed by the open skeleton of shortest bond distances within Au26-Tube. In addition to this, the homogeneous distribution of charges and the strong s-d hybridization exhibited by FMOs are seen to play a pivotal role in increasing the stability of Au26-Tube. The present investigation also reveals that the characteristic fluxionality proposed to exist in the Au26 system is noted only above 400 K and it is missing at room temperature. The simulations also bring forth the question of how relevant a ground state conformation is at working temperatures.
doi_str_mv 10.1039/c7cp07997d
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C7CP07997D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29479612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-55874e85164c564a4263c3af070daf4ba6ec45473cbda66e656737604279228e3</originalsourceid><addsrcrecordid>eNo9j0tLw0AURgdRbK1u_AEyayV2Hnfuzbgr8QkFXeg6TCYzEEmbkkmg_fc-ql193-Jw4DB2KcWtFNrOPfmNIGupPmJTCagzK3I4PnzCCTtL6VMIIY3Up2yiLJBFqabsZjFyhfyOO-5dCryLPLbjtunWrm2G3dx3Wdg2aQhrH87ZSXRtChd_O2Mfjw_vxXO2fH16KRbLzMschsyYnCDkRiJ4g-BAofbaRUGidhEqh8GDAdK-qh1iQIOkCQUoskrlQc_Y9d7r-y6lPsRy0zcr1-9KKcqf4rKg4u23-P4bvtrDm7FahfqA_ifqL07nTgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Au 26 : a case of fluxionality/co-existence</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Joshi, Krati ; Krishnamurty, Sailaja</creator><creatorcontrib>Joshi, Krati ; Krishnamurty, Sailaja</creatorcontrib><description>The Au26 cluster is one of the widely studied gold clusters in the size range of n = 21-30. It has been proposed in a more recent combined experimental and theoretical study that the neutral Au26 cluster is fluxional. The fluxionality of a cluster is relevant to its catalytic applications. In this context, to explore the extent of fluxionality, Born Oppenheimer Molecular Dynamical (BOMD) simulations are carried out on experimentally and theoretically proposed fluxional Au26 conformations (three compact or core-shell structures and a high symmetry cage structure). The simulations reveal that the high energy golden tube outperforms the ground state structure (compact C2v conformation) as well as the other two low-symmetry compact conformations in terms of thermal stability. The enhancement in the thermal stability is explained on the basis of structural integrity imposed by the open skeleton of shortest bond distances within Au26-Tube. In addition to this, the homogeneous distribution of charges and the strong s-d hybridization exhibited by FMOs are seen to play a pivotal role in increasing the stability of Au26-Tube. The present investigation also reveals that the characteristic fluxionality proposed to exist in the Au26 system is noted only above 400 K and it is missing at room temperature. The simulations also bring forth the question of how relevant a ground state conformation is at working temperatures.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c7cp07997d</identifier><identifier>PMID: 29479612</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2018-04, Vol.20 (13), p.8616-8623</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c184t-55874e85164c564a4263c3af070daf4ba6ec45473cbda66e656737604279228e3</citedby><cites>FETCH-LOGICAL-c184t-55874e85164c564a4263c3af070daf4ba6ec45473cbda66e656737604279228e3</cites><orcidid>0000-0001-5090-1892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29479612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joshi, Krati</creatorcontrib><creatorcontrib>Krishnamurty, Sailaja</creatorcontrib><title>Au 26 : a case of fluxionality/co-existence</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The Au26 cluster is one of the widely studied gold clusters in the size range of n = 21-30. It has been proposed in a more recent combined experimental and theoretical study that the neutral Au26 cluster is fluxional. The fluxionality of a cluster is relevant to its catalytic applications. In this context, to explore the extent of fluxionality, Born Oppenheimer Molecular Dynamical (BOMD) simulations are carried out on experimentally and theoretically proposed fluxional Au26 conformations (three compact or core-shell structures and a high symmetry cage structure). The simulations reveal that the high energy golden tube outperforms the ground state structure (compact C2v conformation) as well as the other two low-symmetry compact conformations in terms of thermal stability. The enhancement in the thermal stability is explained on the basis of structural integrity imposed by the open skeleton of shortest bond distances within Au26-Tube. In addition to this, the homogeneous distribution of charges and the strong s-d hybridization exhibited by FMOs are seen to play a pivotal role in increasing the stability of Au26-Tube. The present investigation also reveals that the characteristic fluxionality proposed to exist in the Au26 system is noted only above 400 K and it is missing at room temperature. The simulations also bring forth the question of how relevant a ground state conformation is at working temperatures.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLw0AURgdRbK1u_AEyayV2Hnfuzbgr8QkFXeg6TCYzEEmbkkmg_fc-ql193-Jw4DB2KcWtFNrOPfmNIGupPmJTCagzK3I4PnzCCTtL6VMIIY3Up2yiLJBFqabsZjFyhfyOO-5dCryLPLbjtunWrm2G3dx3Wdg2aQhrH87ZSXRtChd_O2Mfjw_vxXO2fH16KRbLzMschsyYnCDkRiJ4g-BAofbaRUGidhEqh8GDAdK-qh1iQIOkCQUoskrlQc_Y9d7r-y6lPsRy0zcr1-9KKcqf4rKg4u23-P4bvtrDm7FahfqA_ifqL07nTgM</recordid><startdate>20180407</startdate><enddate>20180407</enddate><creator>Joshi, Krati</creator><creator>Krishnamurty, Sailaja</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5090-1892</orcidid></search><sort><creationdate>20180407</creationdate><title>Au 26 : a case of fluxionality/co-existence</title><author>Joshi, Krati ; Krishnamurty, Sailaja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-55874e85164c564a4263c3af070daf4ba6ec45473cbda66e656737604279228e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Krati</creatorcontrib><creatorcontrib>Krishnamurty, Sailaja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, Krati</au><au>Krishnamurty, Sailaja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Au 26 : a case of fluxionality/co-existence</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018-04-07</date><risdate>2018</risdate><volume>20</volume><issue>13</issue><spage>8616</spage><epage>8623</epage><pages>8616-8623</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The Au26 cluster is one of the widely studied gold clusters in the size range of n = 21-30. It has been proposed in a more recent combined experimental and theoretical study that the neutral Au26 cluster is fluxional. The fluxionality of a cluster is relevant to its catalytic applications. In this context, to explore the extent of fluxionality, Born Oppenheimer Molecular Dynamical (BOMD) simulations are carried out on experimentally and theoretically proposed fluxional Au26 conformations (three compact or core-shell structures and a high symmetry cage structure). The simulations reveal that the high energy golden tube outperforms the ground state structure (compact C2v conformation) as well as the other two low-symmetry compact conformations in terms of thermal stability. The enhancement in the thermal stability is explained on the basis of structural integrity imposed by the open skeleton of shortest bond distances within Au26-Tube. In addition to this, the homogeneous distribution of charges and the strong s-d hybridization exhibited by FMOs are seen to play a pivotal role in increasing the stability of Au26-Tube. The present investigation also reveals that the characteristic fluxionality proposed to exist in the Au26 system is noted only above 400 K and it is missing at room temperature. The simulations also bring forth the question of how relevant a ground state conformation is at working temperatures.</abstract><cop>England</cop><pmid>29479612</pmid><doi>10.1039/c7cp07997d</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5090-1892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018-04, Vol.20 (13), p.8616-8623
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_C7CP07997D
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Au 26 : a case of fluxionality/co-existence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Au%2026%20:%20a%20case%20of%20fluxionality/co-existence&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Joshi,%20Krati&rft.date=2018-04-07&rft.volume=20&rft.issue=13&rft.spage=8616&rft.epage=8623&rft.pages=8616-8623&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c7cp07997d&rft_dat=%3Cpubmed_cross%3E29479612%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29479612&rfr_iscdi=true