Ultrafast permeation of seawater pervaporation using single-layered C 2 N via strain engineering
Emerging two-dimensional (2D) ultra-thin nanomaterials are ideal candidates for next-generation high-throughput membranes. 2D carbon nitride C N possesses intrinsic regular and uniformly distributed sub-nanometer pores which probably allow a high permeation flux. This work reports on the investigati...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2017-06, Vol.19 (24), p.15973-15979 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15979 |
---|---|
container_issue | 24 |
container_start_page | 15973 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 19 |
creator | Hu, Zhongqiao Liu, Bo Dahanayaka, Madhavi Law, Adrian Wing-Keung Wei, Jun Zhou, Kun |
description | Emerging two-dimensional (2D) ultra-thin nanomaterials are ideal candidates for next-generation high-throughput membranes. 2D carbon nitride C
N possesses intrinsic regular and uniformly distributed sub-nanometer pores which probably allow a high permeation flux. This work reports on the investigation of seawater pervaporation through a single-layered C
N membrane via a combined approach of first-principles calculations and molecular dynamics simulations. The C
N layer remains stable when the strain is less than a threshold point of 12% at which the pore size is enlarged by 50%. The strained C
N membrane only allows water molecules from seawater to permeate, and the water flux in C
N is enhanced by one to four orders of magnitude compared to that in other membranes. The water flux exhibits an Arrhenius-type relation with temperature. The hydrogen-bonding interaction among water molecules in C
N is weaker and decays faster than that in bulk water, which is because it is energetically unfavorable for water molecules to enter C
N. This proof-of-concept study suggests that C
N might be an appealing membrane material for seawater pervaporation. |
doi_str_mv | 10.1039/c7cp01542a |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C7CP01542A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28594023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c993-be79342f081147249654f857bc7c91f0975232351d626037f8d6f65cded38a5d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK1e_AGyZyG635s9luAXFPVQz3GTnS2RNAm7aaX_3sRoLzPDzMML8yB0TckdJdzcl7rsCJWC2RM0p0LxxJBUnB5nrWboIsYvQgaK8nM0Y6k0gjA-R58fdR-st7HHHYQt2L5qG9x6HMF-2x7CuN7brg3TZRerZoPHUkNS2wMEcDjDDL_ifWVxHMKqBkOzqRqAMGCX6MzbOsLVX1-g9ePDOntOVm9PL9lylZTG8KQAbbhgnqSUCs2EUVL4VOpi-M1QT4yWjDMuqVNMEa596pRXsnTgeGql4wt0O8WWoY0xgM-7UG1tOOSU5KOlPNPZ-6-l5QDfTHC3K7bgjui_Fv4DG25iZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast permeation of seawater pervaporation using single-layered C 2 N via strain engineering</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hu, Zhongqiao ; Liu, Bo ; Dahanayaka, Madhavi ; Law, Adrian Wing-Keung ; Wei, Jun ; Zhou, Kun</creator><creatorcontrib>Hu, Zhongqiao ; Liu, Bo ; Dahanayaka, Madhavi ; Law, Adrian Wing-Keung ; Wei, Jun ; Zhou, Kun</creatorcontrib><description>Emerging two-dimensional (2D) ultra-thin nanomaterials are ideal candidates for next-generation high-throughput membranes. 2D carbon nitride C
N possesses intrinsic regular and uniformly distributed sub-nanometer pores which probably allow a high permeation flux. This work reports on the investigation of seawater pervaporation through a single-layered C
N membrane via a combined approach of first-principles calculations and molecular dynamics simulations. The C
N layer remains stable when the strain is less than a threshold point of 12% at which the pore size is enlarged by 50%. The strained C
N membrane only allows water molecules from seawater to permeate, and the water flux in C
N is enhanced by one to four orders of magnitude compared to that in other membranes. The water flux exhibits an Arrhenius-type relation with temperature. The hydrogen-bonding interaction among water molecules in C
N is weaker and decays faster than that in bulk water, which is because it is energetically unfavorable for water molecules to enter C
N. This proof-of-concept study suggests that C
N might be an appealing membrane material for seawater pervaporation.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c7cp01542a</identifier><identifier>PMID: 28594023</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2017-06, Vol.19 (24), p.15973-15979</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c993-be79342f081147249654f857bc7c91f0975232351d626037f8d6f65cded38a5d3</citedby><cites>FETCH-LOGICAL-c993-be79342f081147249654f857bc7c91f0975232351d626037f8d6f65cded38a5d3</cites><orcidid>0000-0002-3047-0869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28594023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Zhongqiao</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Dahanayaka, Madhavi</creatorcontrib><creatorcontrib>Law, Adrian Wing-Keung</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Zhou, Kun</creatorcontrib><title>Ultrafast permeation of seawater pervaporation using single-layered C 2 N via strain engineering</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Emerging two-dimensional (2D) ultra-thin nanomaterials are ideal candidates for next-generation high-throughput membranes. 2D carbon nitride C
N possesses intrinsic regular and uniformly distributed sub-nanometer pores which probably allow a high permeation flux. This work reports on the investigation of seawater pervaporation through a single-layered C
N membrane via a combined approach of first-principles calculations and molecular dynamics simulations. The C
N layer remains stable when the strain is less than a threshold point of 12% at which the pore size is enlarged by 50%. The strained C
N membrane only allows water molecules from seawater to permeate, and the water flux in C
N is enhanced by one to four orders of magnitude compared to that in other membranes. The water flux exhibits an Arrhenius-type relation with temperature. The hydrogen-bonding interaction among water molecules in C
N is weaker and decays faster than that in bulk water, which is because it is energetically unfavorable for water molecules to enter C
N. This proof-of-concept study suggests that C
N might be an appealing membrane material for seawater pervaporation.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRbK1e_AGyZyG635s9luAXFPVQz3GTnS2RNAm7aaX_3sRoLzPDzMML8yB0TckdJdzcl7rsCJWC2RM0p0LxxJBUnB5nrWboIsYvQgaK8nM0Y6k0gjA-R58fdR-st7HHHYQt2L5qG9x6HMF-2x7CuN7brg3TZRerZoPHUkNS2wMEcDjDDL_ifWVxHMKqBkOzqRqAMGCX6MzbOsLVX1-g9ePDOntOVm9PL9lylZTG8KQAbbhgnqSUCs2EUVL4VOpi-M1QT4yWjDMuqVNMEa596pRXsnTgeGql4wt0O8WWoY0xgM-7UG1tOOSU5KOlPNPZ-6-l5QDfTHC3K7bgjui_Fv4DG25iZg</recordid><startdate>20170621</startdate><enddate>20170621</enddate><creator>Hu, Zhongqiao</creator><creator>Liu, Bo</creator><creator>Dahanayaka, Madhavi</creator><creator>Law, Adrian Wing-Keung</creator><creator>Wei, Jun</creator><creator>Zhou, Kun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3047-0869</orcidid></search><sort><creationdate>20170621</creationdate><title>Ultrafast permeation of seawater pervaporation using single-layered C 2 N via strain engineering</title><author>Hu, Zhongqiao ; Liu, Bo ; Dahanayaka, Madhavi ; Law, Adrian Wing-Keung ; Wei, Jun ; Zhou, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c993-be79342f081147249654f857bc7c91f0975232351d626037f8d6f65cded38a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zhongqiao</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Dahanayaka, Madhavi</creatorcontrib><creatorcontrib>Law, Adrian Wing-Keung</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Zhou, Kun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zhongqiao</au><au>Liu, Bo</au><au>Dahanayaka, Madhavi</au><au>Law, Adrian Wing-Keung</au><au>Wei, Jun</au><au>Zhou, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast permeation of seawater pervaporation using single-layered C 2 N via strain engineering</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2017-06-21</date><risdate>2017</risdate><volume>19</volume><issue>24</issue><spage>15973</spage><epage>15979</epage><pages>15973-15979</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Emerging two-dimensional (2D) ultra-thin nanomaterials are ideal candidates for next-generation high-throughput membranes. 2D carbon nitride C
N possesses intrinsic regular and uniformly distributed sub-nanometer pores which probably allow a high permeation flux. This work reports on the investigation of seawater pervaporation through a single-layered C
N membrane via a combined approach of first-principles calculations and molecular dynamics simulations. The C
N layer remains stable when the strain is less than a threshold point of 12% at which the pore size is enlarged by 50%. The strained C
N membrane only allows water molecules from seawater to permeate, and the water flux in C
N is enhanced by one to four orders of magnitude compared to that in other membranes. The water flux exhibits an Arrhenius-type relation with temperature. The hydrogen-bonding interaction among water molecules in C
N is weaker and decays faster than that in bulk water, which is because it is energetically unfavorable for water molecules to enter C
N. This proof-of-concept study suggests that C
N might be an appealing membrane material for seawater pervaporation.</abstract><cop>England</cop><pmid>28594023</pmid><doi>10.1039/c7cp01542a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3047-0869</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2017-06, Vol.19 (24), p.15973-15979 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C7CP01542A |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Ultrafast permeation of seawater pervaporation using single-layered C 2 N via strain engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20permeation%20of%20seawater%20pervaporation%20using%20single-layered%20C%202%20N%20via%20strain%20engineering&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Hu,%20Zhongqiao&rft.date=2017-06-21&rft.volume=19&rft.issue=24&rft.spage=15973&rft.epage=15979&rft.pages=15973-15979&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c7cp01542a&rft_dat=%3Cpubmed_cross%3E28594023%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28594023&rfr_iscdi=true |