Water-free synthesis of ZnO quantum dots for application as an electron injection layer in light-emitting electrochemical cells

Large-area light emitters like organic (OLEDs) or quantum dot light-emitting devices (QLEDs) and light-emitting electrochemical cells (LECs) have gained increasing interest due to their cost-effective fabrication on various even flexible substrates. The implementation of ZnO nanoparticles as an elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2017, Vol.5 (9), p.2344-2351
Hauptverfasser: Daumann, S, Andrzejewski, D, Di Marcantonio, M, Hagemann, U, Wepfer, S, Vollkommer, F, Bacher, G, Epple, M, Nannen, E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2351
container_issue 9
container_start_page 2344
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 5
creator Daumann, S
Andrzejewski, D
Di Marcantonio, M
Hagemann, U
Wepfer, S
Vollkommer, F
Bacher, G
Epple, M
Nannen, E
description Large-area light emitters like organic (OLEDs) or quantum dot light-emitting devices (QLEDs) and light-emitting electrochemical cells (LECs) have gained increasing interest due to their cost-effective fabrication on various even flexible substrates. The implementation of ZnO nanoparticles as an electron injection layer in large-area emitters leads to efficient solution-based devices. However, ZnO support layers are frequently in direct contact with water-sensitive emitter materials, which requires ZnO nanoparticles with minimum water content. A water-free synthesis route (except for the small amount of water formed during the synthesis) of ligand-free ZnO nanoparticles is presented. The spherical ZnO nanoparticles have a diameter of 3.4 nm, possess a high crystallinity, and form stable dispersions in ethanol or 1-hexanol. Their application together with a transition metal complex (iTMC)-LEC as an additional electron injection layer resulted in an increase of the device efficiency from 1.6 to 2.4 lm W −1 as well as the reduction of the run-up time to one fifth, compared to the same system without ZnO nanoparticles. Large-area light emitters like organic (OLEDs) or quantum dot light-emitting devices (QLEDs) and light-emitting electrochemical cells (LECs) have gained increasing interest due to their cost-effective fabrication on various even flexible substrates.
doi_str_mv 10.1039/c6tc05571k
format Article
fullrecord <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6TC05571K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c6tc05571k</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-f91d9a1a40de5696d3cb0a12ae45bae0285f493d98d429197dbfac9250f448333</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EElXpwo5kVqSAHdtpPKKIL1GpSxESS3T1R-viJsF2h07866QUysYt997dT294CJ1Tck0JkzeqSIoIMabvR2iQE0GysWD8-KDz4hSNYlyRfkpalIUcoM9XSCZkNhiD47ZJSxNdxK3Fb80Uf2ygSZs11m2K2LYBQ9d5pyC5tsEQMTTYeKNS6K1rVr3aPTxsTeg99m6xTJlZu5Rcs_hF1bK_KPBYGe_jGTqx4KMZ_ewherm_m1WP2WT68FTdTjLFuEiZlVRLoMCJNqKQhWZqToDmYLiYgyF5KSyXTMtS81xSOdZzC0rmgljOS8bYEF3tc1VoYwzG1l1wawjbmpJ6115dFbPqu73nHr7cwyGqA_fXbt1p2zMX_zHsC6rDemM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Water-free synthesis of ZnO quantum dots for application as an electron injection layer in light-emitting electrochemical cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Daumann, S ; Andrzejewski, D ; Di Marcantonio, M ; Hagemann, U ; Wepfer, S ; Vollkommer, F ; Bacher, G ; Epple, M ; Nannen, E</creator><creatorcontrib>Daumann, S ; Andrzejewski, D ; Di Marcantonio, M ; Hagemann, U ; Wepfer, S ; Vollkommer, F ; Bacher, G ; Epple, M ; Nannen, E</creatorcontrib><description>Large-area light emitters like organic (OLEDs) or quantum dot light-emitting devices (QLEDs) and light-emitting electrochemical cells (LECs) have gained increasing interest due to their cost-effective fabrication on various even flexible substrates. The implementation of ZnO nanoparticles as an electron injection layer in large-area emitters leads to efficient solution-based devices. However, ZnO support layers are frequently in direct contact with water-sensitive emitter materials, which requires ZnO nanoparticles with minimum water content. A water-free synthesis route (except for the small amount of water formed during the synthesis) of ligand-free ZnO nanoparticles is presented. The spherical ZnO nanoparticles have a diameter of 3.4 nm, possess a high crystallinity, and form stable dispersions in ethanol or 1-hexanol. Their application together with a transition metal complex (iTMC)-LEC as an additional electron injection layer resulted in an increase of the device efficiency from 1.6 to 2.4 lm W −1 as well as the reduction of the run-up time to one fifth, compared to the same system without ZnO nanoparticles. Large-area light emitters like organic (OLEDs) or quantum dot light-emitting devices (QLEDs) and light-emitting electrochemical cells (LECs) have gained increasing interest due to their cost-effective fabrication on various even flexible substrates.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c6tc05571k</identifier><language>eng</language><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2017, Vol.5 (9), p.2344-2351</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-f91d9a1a40de5696d3cb0a12ae45bae0285f493d98d429197dbfac9250f448333</citedby><cites>FETCH-LOGICAL-c345t-f91d9a1a40de5696d3cb0a12ae45bae0285f493d98d429197dbfac9250f448333</cites><orcidid>0000-0002-1641-7068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Daumann, S</creatorcontrib><creatorcontrib>Andrzejewski, D</creatorcontrib><creatorcontrib>Di Marcantonio, M</creatorcontrib><creatorcontrib>Hagemann, U</creatorcontrib><creatorcontrib>Wepfer, S</creatorcontrib><creatorcontrib>Vollkommer, F</creatorcontrib><creatorcontrib>Bacher, G</creatorcontrib><creatorcontrib>Epple, M</creatorcontrib><creatorcontrib>Nannen, E</creatorcontrib><title>Water-free synthesis of ZnO quantum dots for application as an electron injection layer in light-emitting electrochemical cells</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Large-area light emitters like organic (OLEDs) or quantum dot light-emitting devices (QLEDs) and light-emitting electrochemical cells (LECs) have gained increasing interest due to their cost-effective fabrication on various even flexible substrates. The implementation of ZnO nanoparticles as an electron injection layer in large-area emitters leads to efficient solution-based devices. However, ZnO support layers are frequently in direct contact with water-sensitive emitter materials, which requires ZnO nanoparticles with minimum water content. A water-free synthesis route (except for the small amount of water formed during the synthesis) of ligand-free ZnO nanoparticles is presented. The spherical ZnO nanoparticles have a diameter of 3.4 nm, possess a high crystallinity, and form stable dispersions in ethanol or 1-hexanol. Their application together with a transition metal complex (iTMC)-LEC as an additional electron injection layer resulted in an increase of the device efficiency from 1.6 to 2.4 lm W −1 as well as the reduction of the run-up time to one fifth, compared to the same system without ZnO nanoparticles. Large-area light emitters like organic (OLEDs) or quantum dot light-emitting devices (QLEDs) and light-emitting electrochemical cells (LECs) have gained increasing interest due to their cost-effective fabrication on various even flexible substrates.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EElXpwo5kVqSAHdtpPKKIL1GpSxESS3T1R-viJsF2h07866QUysYt997dT294CJ1Tck0JkzeqSIoIMabvR2iQE0GysWD8-KDz4hSNYlyRfkpalIUcoM9XSCZkNhiD47ZJSxNdxK3Fb80Uf2ygSZs11m2K2LYBQ9d5pyC5tsEQMTTYeKNS6K1rVr3aPTxsTeg99m6xTJlZu5Rcs_hF1bK_KPBYGe_jGTqx4KMZ_ewherm_m1WP2WT68FTdTjLFuEiZlVRLoMCJNqKQhWZqToDmYLiYgyF5KSyXTMtS81xSOdZzC0rmgljOS8bYEF3tc1VoYwzG1l1wawjbmpJ6115dFbPqu73nHr7cwyGqA_fXbt1p2zMX_zHsC6rDemM</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Daumann, S</creator><creator>Andrzejewski, D</creator><creator>Di Marcantonio, M</creator><creator>Hagemann, U</creator><creator>Wepfer, S</creator><creator>Vollkommer, F</creator><creator>Bacher, G</creator><creator>Epple, M</creator><creator>Nannen, E</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1641-7068</orcidid></search><sort><creationdate>2017</creationdate><title>Water-free synthesis of ZnO quantum dots for application as an electron injection layer in light-emitting electrochemical cells</title><author>Daumann, S ; Andrzejewski, D ; Di Marcantonio, M ; Hagemann, U ; Wepfer, S ; Vollkommer, F ; Bacher, G ; Epple, M ; Nannen, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-f91d9a1a40de5696d3cb0a12ae45bae0285f493d98d429197dbfac9250f448333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daumann, S</creatorcontrib><creatorcontrib>Andrzejewski, D</creatorcontrib><creatorcontrib>Di Marcantonio, M</creatorcontrib><creatorcontrib>Hagemann, U</creatorcontrib><creatorcontrib>Wepfer, S</creatorcontrib><creatorcontrib>Vollkommer, F</creatorcontrib><creatorcontrib>Bacher, G</creatorcontrib><creatorcontrib>Epple, M</creatorcontrib><creatorcontrib>Nannen, E</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daumann, S</au><au>Andrzejewski, D</au><au>Di Marcantonio, M</au><au>Hagemann, U</au><au>Wepfer, S</au><au>Vollkommer, F</au><au>Bacher, G</au><au>Epple, M</au><au>Nannen, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water-free synthesis of ZnO quantum dots for application as an electron injection layer in light-emitting electrochemical cells</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2017</date><risdate>2017</risdate><volume>5</volume><issue>9</issue><spage>2344</spage><epage>2351</epage><pages>2344-2351</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Large-area light emitters like organic (OLEDs) or quantum dot light-emitting devices (QLEDs) and light-emitting electrochemical cells (LECs) have gained increasing interest due to their cost-effective fabrication on various even flexible substrates. The implementation of ZnO nanoparticles as an electron injection layer in large-area emitters leads to efficient solution-based devices. However, ZnO support layers are frequently in direct contact with water-sensitive emitter materials, which requires ZnO nanoparticles with minimum water content. A water-free synthesis route (except for the small amount of water formed during the synthesis) of ligand-free ZnO nanoparticles is presented. The spherical ZnO nanoparticles have a diameter of 3.4 nm, possess a high crystallinity, and form stable dispersions in ethanol or 1-hexanol. Their application together with a transition metal complex (iTMC)-LEC as an additional electron injection layer resulted in an increase of the device efficiency from 1.6 to 2.4 lm W −1 as well as the reduction of the run-up time to one fifth, compared to the same system without ZnO nanoparticles. Large-area light emitters like organic (OLEDs) or quantum dot light-emitting devices (QLEDs) and light-emitting electrochemical cells (LECs) have gained increasing interest due to their cost-effective fabrication on various even flexible substrates.</abstract><doi>10.1039/c6tc05571k</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1641-7068</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2017, Vol.5 (9), p.2344-2351
issn 2050-7526
2050-7534
language eng
recordid cdi_crossref_primary_10_1039_C6TC05571K
source Royal Society Of Chemistry Journals 2008-
title Water-free synthesis of ZnO quantum dots for application as an electron injection layer in light-emitting electrochemical cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water-free%20synthesis%20of%20ZnO%20quantum%20dots%20for%20application%20as%20an%20electron%20injection%20layer%20in%20light-emitting%20electrochemical%20cells&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Daumann,%20S&rft.date=2017&rft.volume=5&rft.issue=9&rft.spage=2344&rft.epage=2351&rft.pages=2344-2351&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c6tc05571k&rft_dat=%3Crsc_cross%3Ec6tc05571k%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true