Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment

Organic–inorganic halide perovskites have recently attracted strong research interest for fabrication of high-performance, low-cost photovoltaic devices. Recently, we reported a highly reproducible procedure to fabricate high-performance organic–inorganic halide perovskite solar cells. This procedur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2016, Vol.4 (22), p.8554-8561
Hauptverfasser: Zhang, Fan, Song, Jun, Zhang, Linxing, Niu, Fangfang, Hao, Yuying, Zeng, Pengju, Niu, Hanben, Huang, Jinsong, Lian, Jiarong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8561
container_issue 22
container_start_page 8554
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 4
creator Zhang, Fan
Song, Jun
Zhang, Linxing
Niu, Fangfang
Hao, Yuying
Zeng, Pengju
Niu, Hanben
Huang, Jinsong
Lian, Jiarong
description Organic–inorganic halide perovskites have recently attracted strong research interest for fabrication of high-performance, low-cost photovoltaic devices. Recently, we reported a highly reproducible procedure to fabricate high-performance organic–inorganic halide perovskite solar cells. This procedure, based on a one-step, solvent-induced, fast deposition-crystallization method, involves the use of sec -butyl alcohol as a new solvent to induce the CH 3 NH 3 PbI 3 fast crystallization deposition. In the present study, we propose a reproducible fabrication method to prepare both flat and large-grain perovskite film by adding a pre-annealing step to strengthen the perovskite nucleation, aiming to facilitate the excess CH 3 NH 3 I and solvent removal in the sec -butyl alcohol soaking process, in which all films with thickness between 420 nm and 1 μm performed uniformly. The best performing planar device obtained with this procedure had an efficiency of 17.2% under AM 1.5G illumination and an average power conversion efficiency of 16.2 ± 0.5%. We also analyzed the efficiency of halide perovskite planar solar cells as a function of the perovskite film thickness; the efficiency dropped only slightly to 15.7% when the perovskite film thickness was increased to 1 μm.
doi_str_mv 10.1039/C6TA03115C
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6TA03115C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C6TA03115C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-7b73f9e9481b8f1eee174108ae16dab57e8b6d56dc8d0aec6fb17aef1c2a42c63</originalsourceid><addsrcrecordid>eNpFkMFLwzAYxYMoOOYu_gU5C9V8a5umx1GcCgMv81y-pl-2aNrMJBv431uZ6Lu8x4_HOzzGbkHcg8jrh0ZuVyIHKJsLNluKUmRVUcvLv6zUNVvE-C4mKSFkXc-YW1s3ZGkf_HG35w7DjviBgj_FD5uI7wLaMXLjw4DJ-pGfLHLk2g-dHc_EGx7p80hjsuh42tNUdRzHnkfvThPmKRCmYUo37Mqgi7T49Tl7Wz9um-ds8_r00qw2mS4AUlZ1VW5qqgsFnTJARFAVIBQSyB67siLVyb6UvVa9QNLSdFAhGdBLLJZa5nN2d97VwccYyLSHYAcMXy2I9ueq9v-q_BukfF7p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zhang, Fan ; Song, Jun ; Zhang, Linxing ; Niu, Fangfang ; Hao, Yuying ; Zeng, Pengju ; Niu, Hanben ; Huang, Jinsong ; Lian, Jiarong</creator><creatorcontrib>Zhang, Fan ; Song, Jun ; Zhang, Linxing ; Niu, Fangfang ; Hao, Yuying ; Zeng, Pengju ; Niu, Hanben ; Huang, Jinsong ; Lian, Jiarong</creatorcontrib><description>Organic–inorganic halide perovskites have recently attracted strong research interest for fabrication of high-performance, low-cost photovoltaic devices. Recently, we reported a highly reproducible procedure to fabricate high-performance organic–inorganic halide perovskite solar cells. This procedure, based on a one-step, solvent-induced, fast deposition-crystallization method, involves the use of sec -butyl alcohol as a new solvent to induce the CH 3 NH 3 PbI 3 fast crystallization deposition. In the present study, we propose a reproducible fabrication method to prepare both flat and large-grain perovskite film by adding a pre-annealing step to strengthen the perovskite nucleation, aiming to facilitate the excess CH 3 NH 3 I and solvent removal in the sec -butyl alcohol soaking process, in which all films with thickness between 420 nm and 1 μm performed uniformly. The best performing planar device obtained with this procedure had an efficiency of 17.2% under AM 1.5G illumination and an average power conversion efficiency of 16.2 ± 0.5%. We also analyzed the efficiency of halide perovskite planar solar cells as a function of the perovskite film thickness; the efficiency dropped only slightly to 15.7% when the perovskite film thickness was increased to 1 μm.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C6TA03115C</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2016, Vol.4 (22), p.8554-8561</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-7b73f9e9481b8f1eee174108ae16dab57e8b6d56dc8d0aec6fb17aef1c2a42c63</citedby><cites>FETCH-LOGICAL-c411t-7b73f9e9481b8f1eee174108ae16dab57e8b6d56dc8d0aec6fb17aef1c2a42c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Zhang, Linxing</creatorcontrib><creatorcontrib>Niu, Fangfang</creatorcontrib><creatorcontrib>Hao, Yuying</creatorcontrib><creatorcontrib>Zeng, Pengju</creatorcontrib><creatorcontrib>Niu, Hanben</creatorcontrib><creatorcontrib>Huang, Jinsong</creatorcontrib><creatorcontrib>Lian, Jiarong</creatorcontrib><title>Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Organic–inorganic halide perovskites have recently attracted strong research interest for fabrication of high-performance, low-cost photovoltaic devices. Recently, we reported a highly reproducible procedure to fabricate high-performance organic–inorganic halide perovskite solar cells. This procedure, based on a one-step, solvent-induced, fast deposition-crystallization method, involves the use of sec -butyl alcohol as a new solvent to induce the CH 3 NH 3 PbI 3 fast crystallization deposition. In the present study, we propose a reproducible fabrication method to prepare both flat and large-grain perovskite film by adding a pre-annealing step to strengthen the perovskite nucleation, aiming to facilitate the excess CH 3 NH 3 I and solvent removal in the sec -butyl alcohol soaking process, in which all films with thickness between 420 nm and 1 μm performed uniformly. The best performing planar device obtained with this procedure had an efficiency of 17.2% under AM 1.5G illumination and an average power conversion efficiency of 16.2 ± 0.5%. We also analyzed the efficiency of halide perovskite planar solar cells as a function of the perovskite film thickness; the efficiency dropped only slightly to 15.7% when the perovskite film thickness was increased to 1 μm.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAYxYMoOOYu_gU5C9V8a5umx1GcCgMv81y-pl-2aNrMJBv431uZ6Lu8x4_HOzzGbkHcg8jrh0ZuVyIHKJsLNluKUmRVUcvLv6zUNVvE-C4mKSFkXc-YW1s3ZGkf_HG35w7DjviBgj_FD5uI7wLaMXLjw4DJ-pGfLHLk2g-dHc_EGx7p80hjsuh42tNUdRzHnkfvThPmKRCmYUo37Mqgi7T49Tl7Wz9um-ds8_r00qw2mS4AUlZ1VW5qqgsFnTJARFAVIBQSyB67siLVyb6UvVa9QNLSdFAhGdBLLJZa5nN2d97VwccYyLSHYAcMXy2I9ueq9v-q_BukfF7p</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Zhang, Fan</creator><creator>Song, Jun</creator><creator>Zhang, Linxing</creator><creator>Niu, Fangfang</creator><creator>Hao, Yuying</creator><creator>Zeng, Pengju</creator><creator>Niu, Hanben</creator><creator>Huang, Jinsong</creator><creator>Lian, Jiarong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2016</creationdate><title>Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment</title><author>Zhang, Fan ; Song, Jun ; Zhang, Linxing ; Niu, Fangfang ; Hao, Yuying ; Zeng, Pengju ; Niu, Hanben ; Huang, Jinsong ; Lian, Jiarong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-7b73f9e9481b8f1eee174108ae16dab57e8b6d56dc8d0aec6fb17aef1c2a42c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Zhang, Linxing</creatorcontrib><creatorcontrib>Niu, Fangfang</creatorcontrib><creatorcontrib>Hao, Yuying</creatorcontrib><creatorcontrib>Zeng, Pengju</creatorcontrib><creatorcontrib>Niu, Hanben</creatorcontrib><creatorcontrib>Huang, Jinsong</creatorcontrib><creatorcontrib>Lian, Jiarong</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fan</au><au>Song, Jun</au><au>Zhang, Linxing</au><au>Niu, Fangfang</au><au>Hao, Yuying</au><au>Zeng, Pengju</au><au>Niu, Hanben</au><au>Huang, Jinsong</au><au>Lian, Jiarong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2016</date><risdate>2016</risdate><volume>4</volume><issue>22</issue><spage>8554</spage><epage>8561</epage><pages>8554-8561</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Organic–inorganic halide perovskites have recently attracted strong research interest for fabrication of high-performance, low-cost photovoltaic devices. Recently, we reported a highly reproducible procedure to fabricate high-performance organic–inorganic halide perovskite solar cells. This procedure, based on a one-step, solvent-induced, fast deposition-crystallization method, involves the use of sec -butyl alcohol as a new solvent to induce the CH 3 NH 3 PbI 3 fast crystallization deposition. In the present study, we propose a reproducible fabrication method to prepare both flat and large-grain perovskite film by adding a pre-annealing step to strengthen the perovskite nucleation, aiming to facilitate the excess CH 3 NH 3 I and solvent removal in the sec -butyl alcohol soaking process, in which all films with thickness between 420 nm and 1 μm performed uniformly. The best performing planar device obtained with this procedure had an efficiency of 17.2% under AM 1.5G illumination and an average power conversion efficiency of 16.2 ± 0.5%. We also analyzed the efficiency of halide perovskite planar solar cells as a function of the perovskite film thickness; the efficiency dropped only slightly to 15.7% when the perovskite film thickness was increased to 1 μm.</abstract><doi>10.1039/C6TA03115C</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2016, Vol.4 (22), p.8554-8561
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_C6TA03115C
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Film-through%20large%20perovskite%20grains%20formation%20via%20a%20combination%20of%20sequential%20thermal%20and%20solvent%20treatment&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhang,%20Fan&rft.date=2016&rft.volume=4&rft.issue=22&rft.spage=8554&rft.epage=8561&rft.pages=8554-8561&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C6TA03115C&rft_dat=%3Ccrossref%3E10_1039_C6TA03115C%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true