Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment
Organic–inorganic halide perovskites have recently attracted strong research interest for fabrication of high-performance, low-cost photovoltaic devices. Recently, we reported a highly reproducible procedure to fabricate high-performance organic–inorganic halide perovskite solar cells. This procedur...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2016, Vol.4 (22), p.8554-8561 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8561 |
---|---|
container_issue | 22 |
container_start_page | 8554 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 4 |
creator | Zhang, Fan Song, Jun Zhang, Linxing Niu, Fangfang Hao, Yuying Zeng, Pengju Niu, Hanben Huang, Jinsong Lian, Jiarong |
description | Organic–inorganic halide perovskites have recently attracted strong research interest for fabrication of high-performance, low-cost photovoltaic devices. Recently, we reported a highly reproducible procedure to fabricate high-performance organic–inorganic halide perovskite solar cells. This procedure, based on a one-step, solvent-induced, fast deposition-crystallization method, involves the use of
sec
-butyl alcohol as a new solvent to induce the CH
3
NH
3
PbI
3
fast crystallization deposition. In the present study, we propose a reproducible fabrication method to prepare both flat and large-grain perovskite film by adding a pre-annealing step to strengthen the perovskite nucleation, aiming to facilitate the excess CH
3
NH
3
I and solvent removal in the
sec
-butyl alcohol soaking process, in which all films with thickness between 420 nm and 1 μm performed uniformly. The best performing planar device obtained with this procedure had an efficiency of 17.2% under AM 1.5G illumination and an average power conversion efficiency of 16.2 ± 0.5%. We also analyzed the efficiency of halide perovskite planar solar cells as a function of the perovskite film thickness; the efficiency dropped only slightly to 15.7% when the perovskite film thickness was increased to 1 μm. |
doi_str_mv | 10.1039/C6TA03115C |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6TA03115C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C6TA03115C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-7b73f9e9481b8f1eee174108ae16dab57e8b6d56dc8d0aec6fb17aef1c2a42c63</originalsourceid><addsrcrecordid>eNpFkMFLwzAYxYMoOOYu_gU5C9V8a5umx1GcCgMv81y-pl-2aNrMJBv431uZ6Lu8x4_HOzzGbkHcg8jrh0ZuVyIHKJsLNluKUmRVUcvLv6zUNVvE-C4mKSFkXc-YW1s3ZGkf_HG35w7DjviBgj_FD5uI7wLaMXLjw4DJ-pGfLHLk2g-dHc_EGx7p80hjsuh42tNUdRzHnkfvThPmKRCmYUo37Mqgi7T49Tl7Wz9um-ds8_r00qw2mS4AUlZ1VW5qqgsFnTJARFAVIBQSyB67siLVyb6UvVa9QNLSdFAhGdBLLJZa5nN2d97VwccYyLSHYAcMXy2I9ueq9v-q_BukfF7p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zhang, Fan ; Song, Jun ; Zhang, Linxing ; Niu, Fangfang ; Hao, Yuying ; Zeng, Pengju ; Niu, Hanben ; Huang, Jinsong ; Lian, Jiarong</creator><creatorcontrib>Zhang, Fan ; Song, Jun ; Zhang, Linxing ; Niu, Fangfang ; Hao, Yuying ; Zeng, Pengju ; Niu, Hanben ; Huang, Jinsong ; Lian, Jiarong</creatorcontrib><description>Organic–inorganic halide perovskites have recently attracted strong research interest for fabrication of high-performance, low-cost photovoltaic devices. Recently, we reported a highly reproducible procedure to fabricate high-performance organic–inorganic halide perovskite solar cells. This procedure, based on a one-step, solvent-induced, fast deposition-crystallization method, involves the use of
sec
-butyl alcohol as a new solvent to induce the CH
3
NH
3
PbI
3
fast crystallization deposition. In the present study, we propose a reproducible fabrication method to prepare both flat and large-grain perovskite film by adding a pre-annealing step to strengthen the perovskite nucleation, aiming to facilitate the excess CH
3
NH
3
I and solvent removal in the
sec
-butyl alcohol soaking process, in which all films with thickness between 420 nm and 1 μm performed uniformly. The best performing planar device obtained with this procedure had an efficiency of 17.2% under AM 1.5G illumination and an average power conversion efficiency of 16.2 ± 0.5%. We also analyzed the efficiency of halide perovskite planar solar cells as a function of the perovskite film thickness; the efficiency dropped only slightly to 15.7% when the perovskite film thickness was increased to 1 μm.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C6TA03115C</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2016, Vol.4 (22), p.8554-8561</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-7b73f9e9481b8f1eee174108ae16dab57e8b6d56dc8d0aec6fb17aef1c2a42c63</citedby><cites>FETCH-LOGICAL-c411t-7b73f9e9481b8f1eee174108ae16dab57e8b6d56dc8d0aec6fb17aef1c2a42c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Zhang, Linxing</creatorcontrib><creatorcontrib>Niu, Fangfang</creatorcontrib><creatorcontrib>Hao, Yuying</creatorcontrib><creatorcontrib>Zeng, Pengju</creatorcontrib><creatorcontrib>Niu, Hanben</creatorcontrib><creatorcontrib>Huang, Jinsong</creatorcontrib><creatorcontrib>Lian, Jiarong</creatorcontrib><title>Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Organic–inorganic halide perovskites have recently attracted strong research interest for fabrication of high-performance, low-cost photovoltaic devices. Recently, we reported a highly reproducible procedure to fabricate high-performance organic–inorganic halide perovskite solar cells. This procedure, based on a one-step, solvent-induced, fast deposition-crystallization method, involves the use of
sec
-butyl alcohol as a new solvent to induce the CH
3
NH
3
PbI
3
fast crystallization deposition. In the present study, we propose a reproducible fabrication method to prepare both flat and large-grain perovskite film by adding a pre-annealing step to strengthen the perovskite nucleation, aiming to facilitate the excess CH
3
NH
3
I and solvent removal in the
sec
-butyl alcohol soaking process, in which all films with thickness between 420 nm and 1 μm performed uniformly. The best performing planar device obtained with this procedure had an efficiency of 17.2% under AM 1.5G illumination and an average power conversion efficiency of 16.2 ± 0.5%. We also analyzed the efficiency of halide perovskite planar solar cells as a function of the perovskite film thickness; the efficiency dropped only slightly to 15.7% when the perovskite film thickness was increased to 1 μm.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAYxYMoOOYu_gU5C9V8a5umx1GcCgMv81y-pl-2aNrMJBv431uZ6Lu8x4_HOzzGbkHcg8jrh0ZuVyIHKJsLNluKUmRVUcvLv6zUNVvE-C4mKSFkXc-YW1s3ZGkf_HG35w7DjviBgj_FD5uI7wLaMXLjw4DJ-pGfLHLk2g-dHc_EGx7p80hjsuh42tNUdRzHnkfvThPmKRCmYUo37Mqgi7T49Tl7Wz9um-ds8_r00qw2mS4AUlZ1VW5qqgsFnTJARFAVIBQSyB67siLVyb6UvVa9QNLSdFAhGdBLLJZa5nN2d97VwccYyLSHYAcMXy2I9ueq9v-q_BukfF7p</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Zhang, Fan</creator><creator>Song, Jun</creator><creator>Zhang, Linxing</creator><creator>Niu, Fangfang</creator><creator>Hao, Yuying</creator><creator>Zeng, Pengju</creator><creator>Niu, Hanben</creator><creator>Huang, Jinsong</creator><creator>Lian, Jiarong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2016</creationdate><title>Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment</title><author>Zhang, Fan ; Song, Jun ; Zhang, Linxing ; Niu, Fangfang ; Hao, Yuying ; Zeng, Pengju ; Niu, Hanben ; Huang, Jinsong ; Lian, Jiarong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-7b73f9e9481b8f1eee174108ae16dab57e8b6d56dc8d0aec6fb17aef1c2a42c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Zhang, Linxing</creatorcontrib><creatorcontrib>Niu, Fangfang</creatorcontrib><creatorcontrib>Hao, Yuying</creatorcontrib><creatorcontrib>Zeng, Pengju</creatorcontrib><creatorcontrib>Niu, Hanben</creatorcontrib><creatorcontrib>Huang, Jinsong</creatorcontrib><creatorcontrib>Lian, Jiarong</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fan</au><au>Song, Jun</au><au>Zhang, Linxing</au><au>Niu, Fangfang</au><au>Hao, Yuying</au><au>Zeng, Pengju</au><au>Niu, Hanben</au><au>Huang, Jinsong</au><au>Lian, Jiarong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2016</date><risdate>2016</risdate><volume>4</volume><issue>22</issue><spage>8554</spage><epage>8561</epage><pages>8554-8561</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Organic–inorganic halide perovskites have recently attracted strong research interest for fabrication of high-performance, low-cost photovoltaic devices. Recently, we reported a highly reproducible procedure to fabricate high-performance organic–inorganic halide perovskite solar cells. This procedure, based on a one-step, solvent-induced, fast deposition-crystallization method, involves the use of
sec
-butyl alcohol as a new solvent to induce the CH
3
NH
3
PbI
3
fast crystallization deposition. In the present study, we propose a reproducible fabrication method to prepare both flat and large-grain perovskite film by adding a pre-annealing step to strengthen the perovskite nucleation, aiming to facilitate the excess CH
3
NH
3
I and solvent removal in the
sec
-butyl alcohol soaking process, in which all films with thickness between 420 nm and 1 μm performed uniformly. The best performing planar device obtained with this procedure had an efficiency of 17.2% under AM 1.5G illumination and an average power conversion efficiency of 16.2 ± 0.5%. We also analyzed the efficiency of halide perovskite planar solar cells as a function of the perovskite film thickness; the efficiency dropped only slightly to 15.7% when the perovskite film thickness was increased to 1 μm.</abstract><doi>10.1039/C6TA03115C</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2016, Vol.4 (22), p.8554-8561 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C6TA03115C |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Film-through%20large%20perovskite%20grains%20formation%20via%20a%20combination%20of%20sequential%20thermal%20and%20solvent%20treatment&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhang,%20Fan&rft.date=2016&rft.volume=4&rft.issue=22&rft.spage=8554&rft.epage=8561&rft.pages=8554-8561&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C6TA03115C&rft_dat=%3Ccrossref%3E10_1039_C6TA03115C%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |