Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction
The hydrogen evolution reaction using noble-metal free electrocatalysts has captured increasing attention due to its importance in renewable hydrogen production. Herein, a highly active and stable electrocatalyst of MoC encapsulated by graphitized carbon shells (nanoMoC@GS) has been developed via an...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2016-01, Vol.4 (16), p.6006-6013 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6013 |
---|---|
container_issue | 16 |
container_start_page | 6006 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 4 |
creator | Shi, Zhangping Wang, Yangxia Lin, Huanlei Zhang, Hongbin Shen, Meikun Xie, Songhai Zhang, Yahong Gao, Qingsheng Tang, Yi |
description | The hydrogen evolution reaction using noble-metal free electrocatalysts has captured increasing attention due to its importance in renewable hydrogen production. Herein, a highly active and stable electrocatalyst of MoC encapsulated by graphitized carbon shells (nanoMoC@GS) has been developed
via
an
in situ
carburization of a Mo-based metal–organic framework (Mo-MOF) with the atomic periodic structure. The ultrafine MoC nanoparticles (∼3 nm) confined by 1–3 layered graphite shells significantly favor the efficient HER in both acidic and basic media. In particular, a low overpotential (
η
10
= 124 and 77 mV at a current density of −10 mA cm
−2
), a small Tafel slope (43 and 50 mV dec
−1
) and a high exchange current density (
j
0
= 0.015 and 0.212 mA cm
−2
) are achieved on nanoMoC@GS in 0.5 M H
2
SO
4
and 1.0 M KOH, respectively. Such remarkable activity, outperforming most current noble-metal-free electrocatalysts, stems from the cooperative/synergistic effects of ultrafine MoC nanostructure, ultrathin and conductive graphitized carbon shells, and enriched porosity. This work demonstrates a feasible way to design high-performance electrocatalysts
via
converting “atomic contact” hybrid structures (
e.g.
, MOFs), illustrating a new perspective for developing nanocatalysts in the energy chemistry field. |
doi_str_mv | 10.1039/C6TA01900E |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6TA01900E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C6TA01900E</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-c72658f100587a025b6ed5b1c02c7870d662746c7621b86bf6204d0fd5bf2b803</originalsourceid><addsrcrecordid>eNpFUFFLwzAYDKLgmHvxF-RZqH7N1iT1yVG2KWzMh_lc0uTLWumakWSD_gD_tx2K3ssdd8c9HCH3KTymMM2fCr6bQ5oDLK7IiEEGiZjl_PpPS3lLJiF8wgAJwPN8RL7enXenQDvVuY0rXvZeHesmIg01ti016JszGmq9O1BFN9tlSEzjUcfBDNGriPv-maqOorWNbrCLFNsh9k6rqNo-RGqdp7FGWvfGuz0O1bNrT7FxHfWo9EXckRur2oCTXx6Tj-ViV7wm6-3qrZivE824jIkWjGfSpgCZFApYVnE0WZVqYFpIAYZzJmZcC87SSvLKcgYzA3boWFZJmI7Jw8-u9i4Ej7Y8-uagfF-mUF4-LP8_nH4DqYdl-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Shi, Zhangping ; Wang, Yangxia ; Lin, Huanlei ; Zhang, Hongbin ; Shen, Meikun ; Xie, Songhai ; Zhang, Yahong ; Gao, Qingsheng ; Tang, Yi</creator><creatorcontrib>Shi, Zhangping ; Wang, Yangxia ; Lin, Huanlei ; Zhang, Hongbin ; Shen, Meikun ; Xie, Songhai ; Zhang, Yahong ; Gao, Qingsheng ; Tang, Yi</creatorcontrib><description>The hydrogen evolution reaction using noble-metal free electrocatalysts has captured increasing attention due to its importance in renewable hydrogen production. Herein, a highly active and stable electrocatalyst of MoC encapsulated by graphitized carbon shells (nanoMoC@GS) has been developed
via
an
in situ
carburization of a Mo-based metal–organic framework (Mo-MOF) with the atomic periodic structure. The ultrafine MoC nanoparticles (∼3 nm) confined by 1–3 layered graphite shells significantly favor the efficient HER in both acidic and basic media. In particular, a low overpotential (
η
10
= 124 and 77 mV at a current density of −10 mA cm
−2
), a small Tafel slope (43 and 50 mV dec
−1
) and a high exchange current density (
j
0
= 0.015 and 0.212 mA cm
−2
) are achieved on nanoMoC@GS in 0.5 M H
2
SO
4
and 1.0 M KOH, respectively. Such remarkable activity, outperforming most current noble-metal-free electrocatalysts, stems from the cooperative/synergistic effects of ultrafine MoC nanostructure, ultrathin and conductive graphitized carbon shells, and enriched porosity. This work demonstrates a feasible way to design high-performance electrocatalysts
via
converting “atomic contact” hybrid structures (
e.g.
, MOFs), illustrating a new perspective for developing nanocatalysts in the energy chemistry field.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C6TA01900E</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2016-01, Vol.4 (16), p.6006-6013</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-c72658f100587a025b6ed5b1c02c7870d662746c7621b86bf6204d0fd5bf2b803</citedby><cites>FETCH-LOGICAL-c268t-c72658f100587a025b6ed5b1c02c7870d662746c7621b86bf6204d0fd5bf2b803</cites><orcidid>0000-0003-1148-949X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Shi, Zhangping</creatorcontrib><creatorcontrib>Wang, Yangxia</creatorcontrib><creatorcontrib>Lin, Huanlei</creatorcontrib><creatorcontrib>Zhang, Hongbin</creatorcontrib><creatorcontrib>Shen, Meikun</creatorcontrib><creatorcontrib>Xie, Songhai</creatorcontrib><creatorcontrib>Zhang, Yahong</creatorcontrib><creatorcontrib>Gao, Qingsheng</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><title>Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The hydrogen evolution reaction using noble-metal free electrocatalysts has captured increasing attention due to its importance in renewable hydrogen production. Herein, a highly active and stable electrocatalyst of MoC encapsulated by graphitized carbon shells (nanoMoC@GS) has been developed
via
an
in situ
carburization of a Mo-based metal–organic framework (Mo-MOF) with the atomic periodic structure. The ultrafine MoC nanoparticles (∼3 nm) confined by 1–3 layered graphite shells significantly favor the efficient HER in both acidic and basic media. In particular, a low overpotential (
η
10
= 124 and 77 mV at a current density of −10 mA cm
−2
), a small Tafel slope (43 and 50 mV dec
−1
) and a high exchange current density (
j
0
= 0.015 and 0.212 mA cm
−2
) are achieved on nanoMoC@GS in 0.5 M H
2
SO
4
and 1.0 M KOH, respectively. Such remarkable activity, outperforming most current noble-metal-free electrocatalysts, stems from the cooperative/synergistic effects of ultrafine MoC nanostructure, ultrathin and conductive graphitized carbon shells, and enriched porosity. This work demonstrates a feasible way to design high-performance electrocatalysts
via
converting “atomic contact” hybrid structures (
e.g.
, MOFs), illustrating a new perspective for developing nanocatalysts in the energy chemistry field.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFUFFLwzAYDKLgmHvxF-RZqH7N1iT1yVG2KWzMh_lc0uTLWumakWSD_gD_tx2K3ssdd8c9HCH3KTymMM2fCr6bQ5oDLK7IiEEGiZjl_PpPS3lLJiF8wgAJwPN8RL7enXenQDvVuY0rXvZeHesmIg01ti016JszGmq9O1BFN9tlSEzjUcfBDNGriPv-maqOorWNbrCLFNsh9k6rqNo-RGqdp7FGWvfGuz0O1bNrT7FxHfWo9EXckRur2oCTXx6Tj-ViV7wm6-3qrZivE824jIkWjGfSpgCZFApYVnE0WZVqYFpIAYZzJmZcC87SSvLKcgYzA3boWFZJmI7Jw8-u9i4Ej7Y8-uagfF-mUF4-LP8_nH4DqYdl-A</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Shi, Zhangping</creator><creator>Wang, Yangxia</creator><creator>Lin, Huanlei</creator><creator>Zhang, Hongbin</creator><creator>Shen, Meikun</creator><creator>Xie, Songhai</creator><creator>Zhang, Yahong</creator><creator>Gao, Qingsheng</creator><creator>Tang, Yi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1148-949X</orcidid></search><sort><creationdate>20160101</creationdate><title>Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction</title><author>Shi, Zhangping ; Wang, Yangxia ; Lin, Huanlei ; Zhang, Hongbin ; Shen, Meikun ; Xie, Songhai ; Zhang, Yahong ; Gao, Qingsheng ; Tang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-c72658f100587a025b6ed5b1c02c7870d662746c7621b86bf6204d0fd5bf2b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zhangping</creatorcontrib><creatorcontrib>Wang, Yangxia</creatorcontrib><creatorcontrib>Lin, Huanlei</creatorcontrib><creatorcontrib>Zhang, Hongbin</creatorcontrib><creatorcontrib>Shen, Meikun</creatorcontrib><creatorcontrib>Xie, Songhai</creatorcontrib><creatorcontrib>Zhang, Yahong</creatorcontrib><creatorcontrib>Gao, Qingsheng</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zhangping</au><au>Wang, Yangxia</au><au>Lin, Huanlei</au><au>Zhang, Hongbin</au><au>Shen, Meikun</au><au>Xie, Songhai</au><au>Zhang, Yahong</au><au>Gao, Qingsheng</au><au>Tang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>4</volume><issue>16</issue><spage>6006</spage><epage>6013</epage><pages>6006-6013</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The hydrogen evolution reaction using noble-metal free electrocatalysts has captured increasing attention due to its importance in renewable hydrogen production. Herein, a highly active and stable electrocatalyst of MoC encapsulated by graphitized carbon shells (nanoMoC@GS) has been developed
via
an
in situ
carburization of a Mo-based metal–organic framework (Mo-MOF) with the atomic periodic structure. The ultrafine MoC nanoparticles (∼3 nm) confined by 1–3 layered graphite shells significantly favor the efficient HER in both acidic and basic media. In particular, a low overpotential (
η
10
= 124 and 77 mV at a current density of −10 mA cm
−2
), a small Tafel slope (43 and 50 mV dec
−1
) and a high exchange current density (
j
0
= 0.015 and 0.212 mA cm
−2
) are achieved on nanoMoC@GS in 0.5 M H
2
SO
4
and 1.0 M KOH, respectively. Such remarkable activity, outperforming most current noble-metal-free electrocatalysts, stems from the cooperative/synergistic effects of ultrafine MoC nanostructure, ultrathin and conductive graphitized carbon shells, and enriched porosity. This work demonstrates a feasible way to design high-performance electrocatalysts
via
converting “atomic contact” hybrid structures (
e.g.
, MOFs), illustrating a new perspective for developing nanocatalysts in the energy chemistry field.</abstract><doi>10.1039/C6TA01900E</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1148-949X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2016-01, Vol.4 (16), p.6006-6013 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C6TA01900E |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
title | Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20nanoMoC@graphite%20shell%20derived%20from%20a%20MOFs-directed%20strategy:%20an%20efficient%20electrocatalyst%20for%20the%20hydrogen%20evolution%20reaction&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Shi,%20Zhangping&rft.date=2016-01-01&rft.volume=4&rft.issue=16&rft.spage=6006&rft.epage=6013&rft.pages=6006-6013&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C6TA01900E&rft_dat=%3Ccrossref%3E10_1039_C6TA01900E%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |