Stabilizing metastable tetragonal HfO 2 using a non-hydrolytic solution-phase route: ligand exchange as a means of controlling particle size

There has been intense interest in stabilizing the tetragonal phase of HfO since it is predicted to outperform the thermodynamically stable lower-symmetry monoclinic phase for almost every application where HfO has found use by dint of its higher dielectric constant, bandgap, and hardness. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2016-08, Vol.7 (8), p.4930-4939
Hauptverfasser: Waetzig, Gregory R, Depner, Sean W, Asayesh-Ardakani, Hasti, Cultrara, Nicholas D, Shahbazian-Yassar, Reza, Banerjee, Sarbajit
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4939
container_issue 8
container_start_page 4930
container_title Chemical science (Cambridge)
container_volume 7
creator Waetzig, Gregory R
Depner, Sean W
Asayesh-Ardakani, Hasti
Cultrara, Nicholas D
Shahbazian-Yassar, Reza
Banerjee, Sarbajit
description There has been intense interest in stabilizing the tetragonal phase of HfO since it is predicted to outperform the thermodynamically stable lower-symmetry monoclinic phase for almost every application where HfO has found use by dint of its higher dielectric constant, bandgap, and hardness. However, the monoclinic phase is much more thermodynamically stable and the tetragonal phase of HfO is generally accessible only at temperatures above 1720 °C. Classical models comparing the competing influences of bulk free energy and specific surface energy predict that the tetragonal phase of HfO ought to be stable at ultra-small dimensions below 4 nm; however, these size regimes have been difficult to access in the absence of synthetic methods that yield well-defined and monodisperse nanocrystals with precise control over size. In this work, we have developed a modified non-hydrolytic condensation method to precisely control the size of HfO nanocrystals with low concentrations of dopants by suppressing the kinetics of particle growth by cross-condensation with less-reactive precursors. This synthetic method enables us to stabilize tetragonal HfO while evaluating ideas for critical size at which surface energy considerations surpass the bulk free energy stabilization. The phase assignment has been verified by atomic resolution high angle annular dark field images acquired for individual nanocrystals.
doi_str_mv 10.1039/C6SC01601D
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6SC01601D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30155141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c991-a8b7754dce67562a4bd863dbf424e4ba5dbc306c0837ea489c1cd918766d1ea23</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EolXphg9AXiMF7DhxEnYoPIpUqYt2H03sSWrkPGSnEu038NGkKpTZzEPn3pEuIbecPXAmssdcrnPGJeMvF2QasogHMhbZ5XkO2YTMvf9kYwnB4zC5JhPBeBzziE_J93qA0lhzMG1NGxzAj7tFOuDgoO5asHRRrWhId_5IAG27NtjutevsfjCK-s7uBjPe-i14pK7bDfhEramh1RS_1BbaGin4UdkgtJ52FVVdO4x6ezTswY0240NvDnhDriqwHue_fUY2b6-bfBEsV-8f-fMyUFnGA0jLJIkjrVAmsQwhKnUqhS6rKIwwKiHWpRJMKpaKBCFKM8WVzniaSKk5Qihm5P5kq1znvcOq6J1pwO0LzopjqMV_qCN8d4L7XdmgPqN_EYofNxN0JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stabilizing metastable tetragonal HfO 2 using a non-hydrolytic solution-phase route: ligand exchange as a means of controlling particle size</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Waetzig, Gregory R ; Depner, Sean W ; Asayesh-Ardakani, Hasti ; Cultrara, Nicholas D ; Shahbazian-Yassar, Reza ; Banerjee, Sarbajit</creator><creatorcontrib>Waetzig, Gregory R ; Depner, Sean W ; Asayesh-Ardakani, Hasti ; Cultrara, Nicholas D ; Shahbazian-Yassar, Reza ; Banerjee, Sarbajit</creatorcontrib><description>There has been intense interest in stabilizing the tetragonal phase of HfO since it is predicted to outperform the thermodynamically stable lower-symmetry monoclinic phase for almost every application where HfO has found use by dint of its higher dielectric constant, bandgap, and hardness. However, the monoclinic phase is much more thermodynamically stable and the tetragonal phase of HfO is generally accessible only at temperatures above 1720 °C. Classical models comparing the competing influences of bulk free energy and specific surface energy predict that the tetragonal phase of HfO ought to be stable at ultra-small dimensions below 4 nm; however, these size regimes have been difficult to access in the absence of synthetic methods that yield well-defined and monodisperse nanocrystals with precise control over size. In this work, we have developed a modified non-hydrolytic condensation method to precisely control the size of HfO nanocrystals with low concentrations of dopants by suppressing the kinetics of particle growth by cross-condensation with less-reactive precursors. This synthetic method enables us to stabilize tetragonal HfO while evaluating ideas for critical size at which surface energy considerations surpass the bulk free energy stabilization. The phase assignment has been verified by atomic resolution high angle annular dark field images acquired for individual nanocrystals.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/C6SC01601D</identifier><identifier>PMID: 30155141</identifier><language>eng</language><publisher>England</publisher><ispartof>Chemical science (Cambridge), 2016-08, Vol.7 (8), p.4930-4939</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c991-a8b7754dce67562a4bd863dbf424e4ba5dbc306c0837ea489c1cd918766d1ea23</citedby><cites>FETCH-LOGICAL-c991-a8b7754dce67562a4bd863dbf424e4ba5dbc306c0837ea489c1cd918766d1ea23</cites><orcidid>0000-0002-2028-4675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30155141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waetzig, Gregory R</creatorcontrib><creatorcontrib>Depner, Sean W</creatorcontrib><creatorcontrib>Asayesh-Ardakani, Hasti</creatorcontrib><creatorcontrib>Cultrara, Nicholas D</creatorcontrib><creatorcontrib>Shahbazian-Yassar, Reza</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><title>Stabilizing metastable tetragonal HfO 2 using a non-hydrolytic solution-phase route: ligand exchange as a means of controlling particle size</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>There has been intense interest in stabilizing the tetragonal phase of HfO since it is predicted to outperform the thermodynamically stable lower-symmetry monoclinic phase for almost every application where HfO has found use by dint of its higher dielectric constant, bandgap, and hardness. However, the monoclinic phase is much more thermodynamically stable and the tetragonal phase of HfO is generally accessible only at temperatures above 1720 °C. Classical models comparing the competing influences of bulk free energy and specific surface energy predict that the tetragonal phase of HfO ought to be stable at ultra-small dimensions below 4 nm; however, these size regimes have been difficult to access in the absence of synthetic methods that yield well-defined and monodisperse nanocrystals with precise control over size. In this work, we have developed a modified non-hydrolytic condensation method to precisely control the size of HfO nanocrystals with low concentrations of dopants by suppressing the kinetics of particle growth by cross-condensation with less-reactive precursors. This synthetic method enables us to stabilize tetragonal HfO while evaluating ideas for critical size at which surface energy considerations surpass the bulk free energy stabilization. The phase assignment has been verified by atomic resolution high angle annular dark field images acquired for individual nanocrystals.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EolXphg9AXiMF7DhxEnYoPIpUqYt2H03sSWrkPGSnEu038NGkKpTZzEPn3pEuIbecPXAmssdcrnPGJeMvF2QasogHMhbZ5XkO2YTMvf9kYwnB4zC5JhPBeBzziE_J93qA0lhzMG1NGxzAj7tFOuDgoO5asHRRrWhId_5IAG27NtjutevsfjCK-s7uBjPe-i14pK7bDfhEramh1RS_1BbaGin4UdkgtJ52FVVdO4x6ezTswY0240NvDnhDriqwHue_fUY2b6-bfBEsV-8f-fMyUFnGA0jLJIkjrVAmsQwhKnUqhS6rKIwwKiHWpRJMKpaKBCFKM8WVzniaSKk5Qihm5P5kq1znvcOq6J1pwO0LzopjqMV_qCN8d4L7XdmgPqN_EYofNxN0JQ</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Waetzig, Gregory R</creator><creator>Depner, Sean W</creator><creator>Asayesh-Ardakani, Hasti</creator><creator>Cultrara, Nicholas D</creator><creator>Shahbazian-Yassar, Reza</creator><creator>Banerjee, Sarbajit</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2028-4675</orcidid></search><sort><creationdate>20160801</creationdate><title>Stabilizing metastable tetragonal HfO 2 using a non-hydrolytic solution-phase route: ligand exchange as a means of controlling particle size</title><author>Waetzig, Gregory R ; Depner, Sean W ; Asayesh-Ardakani, Hasti ; Cultrara, Nicholas D ; Shahbazian-Yassar, Reza ; Banerjee, Sarbajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c991-a8b7754dce67562a4bd863dbf424e4ba5dbc306c0837ea489c1cd918766d1ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waetzig, Gregory R</creatorcontrib><creatorcontrib>Depner, Sean W</creatorcontrib><creatorcontrib>Asayesh-Ardakani, Hasti</creatorcontrib><creatorcontrib>Cultrara, Nicholas D</creatorcontrib><creatorcontrib>Shahbazian-Yassar, Reza</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waetzig, Gregory R</au><au>Depner, Sean W</au><au>Asayesh-Ardakani, Hasti</au><au>Cultrara, Nicholas D</au><au>Shahbazian-Yassar, Reza</au><au>Banerjee, Sarbajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing metastable tetragonal HfO 2 using a non-hydrolytic solution-phase route: ligand exchange as a means of controlling particle size</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>7</volume><issue>8</issue><spage>4930</spage><epage>4939</epage><pages>4930-4939</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>There has been intense interest in stabilizing the tetragonal phase of HfO since it is predicted to outperform the thermodynamically stable lower-symmetry monoclinic phase for almost every application where HfO has found use by dint of its higher dielectric constant, bandgap, and hardness. However, the monoclinic phase is much more thermodynamically stable and the tetragonal phase of HfO is generally accessible only at temperatures above 1720 °C. Classical models comparing the competing influences of bulk free energy and specific surface energy predict that the tetragonal phase of HfO ought to be stable at ultra-small dimensions below 4 nm; however, these size regimes have been difficult to access in the absence of synthetic methods that yield well-defined and monodisperse nanocrystals with precise control over size. In this work, we have developed a modified non-hydrolytic condensation method to precisely control the size of HfO nanocrystals with low concentrations of dopants by suppressing the kinetics of particle growth by cross-condensation with less-reactive precursors. This synthetic method enables us to stabilize tetragonal HfO while evaluating ideas for critical size at which surface energy considerations surpass the bulk free energy stabilization. The phase assignment has been verified by atomic resolution high angle annular dark field images acquired for individual nanocrystals.</abstract><cop>England</cop><pmid>30155141</pmid><doi>10.1039/C6SC01601D</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2028-4675</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2016-08, Vol.7 (8), p.4930-4939
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_C6SC01601D
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Stabilizing metastable tetragonal HfO 2 using a non-hydrolytic solution-phase route: ligand exchange as a means of controlling particle size
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20metastable%20tetragonal%20HfO%202%20using%20a%20non-hydrolytic%20solution-phase%20route:%20ligand%20exchange%20as%20a%20means%20of%20controlling%20particle%20size&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Waetzig,%20Gregory%20R&rft.date=2016-08-01&rft.volume=7&rft.issue=8&rft.spage=4930&rft.epage=4939&rft.pages=4930-4939&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/C6SC01601D&rft_dat=%3Cpubmed_cross%3E30155141%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30155141&rfr_iscdi=true