Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna
We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion. The custom-designed single-element nanoantenna consists...
Gespeichert in:
Veröffentlicht in: | RSC advances 2017-01, Vol.7 (4), p.274-28 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 4 |
container_start_page | 274 |
container_title | RSC advances |
container_volume | 7 |
creator | Yong, Zhengdong Gong, Chensheng Dong, Yongjiang Zhang, Senlin He, Sailing |
description | We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion. The custom-designed single-element nanoantenna consists of a modified gold ring structure with a bowtie-shaped spike inside. In contrast to the spectral response of extinction, the broadband localized electric field intensity enhancement is achieved over a bandwidth of 850 nm in the near infrared spectrum. Up to 26- and 22-fold field enhancements near the bowtie spike are obtained at the peak and even in the dip region of the extinction spectrum, respectively. Moreover, the nanostructure exhibits high tunability of its spectral features by modifying the structural parameters. We further demonstrate that the proposed nanoantenna can provide broadband spontaneous emission rates and quantum efficiency enhancements when a low-quantum efficiency emitter is introduced.
We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion. |
doi_str_mv | 10.1039/c6ra26703c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6RA26703C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202186313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-9341c919a9c9daee1cbea8388084f665d9c41db0b19b7898c08f80c97ca562053</originalsourceid><addsrcrecordid>eNp90c9LwzAUB_AiCo65i3eh4k2o5seaJsc5f8JAEPUaXl_TrbNLZtIh8683WlFP5pKE7yeP5CVJDik5o4SrcxQemCgIx51kwMhYZIwItftnvZ-MQliSOEROmaCDBC68g6oEW6WtQ2ibd1OlpjXY-QbTujFt3NoFWDQrY7t07V21wWjKbQppaOy8NVn0fdhCWDkbD1qwDmxnrIWDZK-GNpjR9zxMnq6vHqe32ez-5m46mWXIJe0yxccUFVWgUFVgDMXSgORSEjmuhcgrhWNalaSkqiykkkhkLQmqAiEXjOR8mGR93fBm1ptSr32zAr_VDhp92TxPtPNz_dItNCO0EDT6k97HJ71uTOj00m28jVfUjBFGpeCUR3XaK_QuBG_qn7qU6M-u66l4mHx1fRrxUY99wB_3-ysxP_4v1-uq5h9DwoqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202186313</pqid></control><display><type>article</type><title>Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yong, Zhengdong ; Gong, Chensheng ; Dong, Yongjiang ; Zhang, Senlin ; He, Sailing</creator><creatorcontrib>Yong, Zhengdong ; Gong, Chensheng ; Dong, Yongjiang ; Zhang, Senlin ; He, Sailing</creatorcontrib><description>We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion. The custom-designed single-element nanoantenna consists of a modified gold ring structure with a bowtie-shaped spike inside. In contrast to the spectral response of extinction, the broadband localized electric field intensity enhancement is achieved over a bandwidth of 850 nm in the near infrared spectrum. Up to 26- and 22-fold field enhancements near the bowtie spike are obtained at the peak and even in the dip region of the extinction spectrum, respectively. Moreover, the nanostructure exhibits high tunability of its spectral features by modifying the structural parameters. We further demonstrate that the proposed nanoantenna can provide broadband spontaneous emission rates and quantum efficiency enhancements when a low-quantum efficiency emitter is introduced.
We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c6ra26703c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Broadband ; Charge distribution ; Efficiency ; Efficiency enhancement ; Electric field enhancement ; Electric field intensities ; Electric fields ; Emitters ; Extinction ; Finite difference time domain method ; Gold ; Infrared devices ; Metamaterial antennas ; Multipole expansions ; Multipoles ; Nanoantennas ; Near infrared radiation ; Near infrared spectra ; Near infrared spectroscopy ; Parameter modification ; Plants (botany) ; Plasmonic nanoantenna ; Plasmons ; Quantum efficiency ; Ring structures ; Spectral sensitivity ; Spontaneous emission ; Spontaneous emission rates ; Structural parameter ; Time domain analysis</subject><ispartof>RSC advances, 2017-01, Vol.7 (4), p.274-28</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-9341c919a9c9daee1cbea8388084f665d9c41db0b19b7898c08f80c97ca562053</citedby><cites>FETCH-LOGICAL-c381t-9341c919a9c9daee1cbea8388084f665d9c41db0b19b7898c08f80c97ca562053</cites><orcidid>0000-0001-6790-4408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-201761$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Yong, Zhengdong</creatorcontrib><creatorcontrib>Gong, Chensheng</creatorcontrib><creatorcontrib>Dong, Yongjiang</creatorcontrib><creatorcontrib>Zhang, Senlin</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><title>Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna</title><title>RSC advances</title><description>We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion. The custom-designed single-element nanoantenna consists of a modified gold ring structure with a bowtie-shaped spike inside. In contrast to the spectral response of extinction, the broadband localized electric field intensity enhancement is achieved over a bandwidth of 850 nm in the near infrared spectrum. Up to 26- and 22-fold field enhancements near the bowtie spike are obtained at the peak and even in the dip region of the extinction spectrum, respectively. Moreover, the nanostructure exhibits high tunability of its spectral features by modifying the structural parameters. We further demonstrate that the proposed nanoantenna can provide broadband spontaneous emission rates and quantum efficiency enhancements when a low-quantum efficiency emitter is introduced.
We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion.</description><subject>Broadband</subject><subject>Charge distribution</subject><subject>Efficiency</subject><subject>Efficiency enhancement</subject><subject>Electric field enhancement</subject><subject>Electric field intensities</subject><subject>Electric fields</subject><subject>Emitters</subject><subject>Extinction</subject><subject>Finite difference time domain method</subject><subject>Gold</subject><subject>Infrared devices</subject><subject>Metamaterial antennas</subject><subject>Multipole expansions</subject><subject>Multipoles</subject><subject>Nanoantennas</subject><subject>Near infrared radiation</subject><subject>Near infrared spectra</subject><subject>Near infrared spectroscopy</subject><subject>Parameter modification</subject><subject>Plants (botany)</subject><subject>Plasmonic nanoantenna</subject><subject>Plasmons</subject><subject>Quantum efficiency</subject><subject>Ring structures</subject><subject>Spectral sensitivity</subject><subject>Spontaneous emission</subject><subject>Spontaneous emission rates</subject><subject>Structural parameter</subject><subject>Time domain analysis</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90c9LwzAUB_AiCo65i3eh4k2o5seaJsc5f8JAEPUaXl_TrbNLZtIh8683WlFP5pKE7yeP5CVJDik5o4SrcxQemCgIx51kwMhYZIwItftnvZ-MQliSOEROmaCDBC68g6oEW6WtQ2ibd1OlpjXY-QbTujFt3NoFWDQrY7t07V21wWjKbQppaOy8NVn0fdhCWDkbD1qwDmxnrIWDZK-GNpjR9zxMnq6vHqe32ez-5m46mWXIJe0yxccUFVWgUFVgDMXSgORSEjmuhcgrhWNalaSkqiykkkhkLQmqAiEXjOR8mGR93fBm1ptSr32zAr_VDhp92TxPtPNz_dItNCO0EDT6k97HJ71uTOj00m28jVfUjBFGpeCUR3XaK_QuBG_qn7qU6M-u66l4mHx1fRrxUY99wB_3-ysxP_4v1-uq5h9DwoqY</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Yong, Zhengdong</creator><creator>Gong, Chensheng</creator><creator>Dong, Yongjiang</creator><creator>Zhang, Senlin</creator><creator>He, Sailing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0001-6790-4408</orcidid></search><sort><creationdate>20170101</creationdate><title>Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna</title><author>Yong, Zhengdong ; Gong, Chensheng ; Dong, Yongjiang ; Zhang, Senlin ; He, Sailing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-9341c919a9c9daee1cbea8388084f665d9c41db0b19b7898c08f80c97ca562053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Broadband</topic><topic>Charge distribution</topic><topic>Efficiency</topic><topic>Efficiency enhancement</topic><topic>Electric field enhancement</topic><topic>Electric field intensities</topic><topic>Electric fields</topic><topic>Emitters</topic><topic>Extinction</topic><topic>Finite difference time domain method</topic><topic>Gold</topic><topic>Infrared devices</topic><topic>Metamaterial antennas</topic><topic>Multipole expansions</topic><topic>Multipoles</topic><topic>Nanoantennas</topic><topic>Near infrared radiation</topic><topic>Near infrared spectra</topic><topic>Near infrared spectroscopy</topic><topic>Parameter modification</topic><topic>Plants (botany)</topic><topic>Plasmonic nanoantenna</topic><topic>Plasmons</topic><topic>Quantum efficiency</topic><topic>Ring structures</topic><topic>Spectral sensitivity</topic><topic>Spontaneous emission</topic><topic>Spontaneous emission rates</topic><topic>Structural parameter</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yong, Zhengdong</creatorcontrib><creatorcontrib>Gong, Chensheng</creatorcontrib><creatorcontrib>Dong, Yongjiang</creatorcontrib><creatorcontrib>Zhang, Senlin</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yong, Zhengdong</au><au>Gong, Chensheng</au><au>Dong, Yongjiang</au><au>Zhang, Senlin</au><au>He, Sailing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna</atitle><jtitle>RSC advances</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>7</volume><issue>4</issue><spage>274</spage><epage>28</epage><pages>274-28</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion. The custom-designed single-element nanoantenna consists of a modified gold ring structure with a bowtie-shaped spike inside. In contrast to the spectral response of extinction, the broadband localized electric field intensity enhancement is achieved over a bandwidth of 850 nm in the near infrared spectrum. Up to 26- and 22-fold field enhancements near the bowtie spike are obtained at the peak and even in the dip region of the extinction spectrum, respectively. Moreover, the nanostructure exhibits high tunability of its spectral features by modifying the structural parameters. We further demonstrate that the proposed nanoantenna can provide broadband spontaneous emission rates and quantum efficiency enhancements when a low-quantum efficiency emitter is introduced.
We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c6ra26703c</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6790-4408</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2017-01, Vol.7 (4), p.274-28 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C6RA26703C |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Broadband Charge distribution Efficiency Efficiency enhancement Electric field enhancement Electric field intensities Electric fields Emitters Extinction Finite difference time domain method Gold Infrared devices Metamaterial antennas Multipole expansions Multipoles Nanoantennas Near infrared radiation Near infrared spectra Near infrared spectroscopy Parameter modification Plants (botany) Plasmonic nanoantenna Plasmons Quantum efficiency Ring structures Spectral sensitivity Spontaneous emission Spontaneous emission rates Structural parameter Time domain analysis |
title | Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20localized%20electric%20field%20enhancement%20produced%20by%20a%20single-element%20plasmonic%20nanoantenna&rft.jtitle=RSC%20advances&rft.au=Yong,%20Zhengdong&rft.date=2017-01-01&rft.volume=7&rft.issue=4&rft.spage=274&rft.epage=28&rft.pages=274-28&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c6ra26703c&rft_dat=%3Cproquest_cross%3E2202186313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202186313&rft_id=info:pmid/&rfr_iscdi=true |