Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna

We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion. The custom-designed single-element nanoantenna consists...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2017-01, Vol.7 (4), p.274-28
Hauptverfasser: Yong, Zhengdong, Gong, Chensheng, Dong, Yongjiang, Zhang, Senlin, He, Sailing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 4
container_start_page 274
container_title RSC advances
container_volume 7
creator Yong, Zhengdong
Gong, Chensheng
Dong, Yongjiang
Zhang, Senlin
He, Sailing
description We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion. The custom-designed single-element nanoantenna consists of a modified gold ring structure with a bowtie-shaped spike inside. In contrast to the spectral response of extinction, the broadband localized electric field intensity enhancement is achieved over a bandwidth of 850 nm in the near infrared spectrum. Up to 26- and 22-fold field enhancements near the bowtie spike are obtained at the peak and even in the dip region of the extinction spectrum, respectively. Moreover, the nanostructure exhibits high tunability of its spectral features by modifying the structural parameters. We further demonstrate that the proposed nanoantenna can provide broadband spontaneous emission rates and quantum efficiency enhancements when a low-quantum efficiency emitter is introduced. We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion.
doi_str_mv 10.1039/c6ra26703c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6RA26703C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202186313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-9341c919a9c9daee1cbea8388084f665d9c41db0b19b7898c08f80c97ca562053</originalsourceid><addsrcrecordid>eNp90c9LwzAUB_AiCo65i3eh4k2o5seaJsc5f8JAEPUaXl_TrbNLZtIh8683WlFP5pKE7yeP5CVJDik5o4SrcxQemCgIx51kwMhYZIwItftnvZ-MQliSOEROmaCDBC68g6oEW6WtQ2ibd1OlpjXY-QbTujFt3NoFWDQrY7t07V21wWjKbQppaOy8NVn0fdhCWDkbD1qwDmxnrIWDZK-GNpjR9zxMnq6vHqe32ez-5m46mWXIJe0yxccUFVWgUFVgDMXSgORSEjmuhcgrhWNalaSkqiykkkhkLQmqAiEXjOR8mGR93fBm1ptSr32zAr_VDhp92TxPtPNz_dItNCO0EDT6k97HJ71uTOj00m28jVfUjBFGpeCUR3XaK_QuBG_qn7qU6M-u66l4mHx1fRrxUY99wB_3-ysxP_4v1-uq5h9DwoqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202186313</pqid></control><display><type>article</type><title>Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yong, Zhengdong ; Gong, Chensheng ; Dong, Yongjiang ; Zhang, Senlin ; He, Sailing</creator><creatorcontrib>Yong, Zhengdong ; Gong, Chensheng ; Dong, Yongjiang ; Zhang, Senlin ; He, Sailing</creatorcontrib><description>We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion. The custom-designed single-element nanoantenna consists of a modified gold ring structure with a bowtie-shaped spike inside. In contrast to the spectral response of extinction, the broadband localized electric field intensity enhancement is achieved over a bandwidth of 850 nm in the near infrared spectrum. Up to 26- and 22-fold field enhancements near the bowtie spike are obtained at the peak and even in the dip region of the extinction spectrum, respectively. Moreover, the nanostructure exhibits high tunability of its spectral features by modifying the structural parameters. We further demonstrate that the proposed nanoantenna can provide broadband spontaneous emission rates and quantum efficiency enhancements when a low-quantum efficiency emitter is introduced. We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c6ra26703c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Broadband ; Charge distribution ; Efficiency ; Efficiency enhancement ; Electric field enhancement ; Electric field intensities ; Electric fields ; Emitters ; Extinction ; Finite difference time domain method ; Gold ; Infrared devices ; Metamaterial antennas ; Multipole expansions ; Multipoles ; Nanoantennas ; Near infrared radiation ; Near infrared spectra ; Near infrared spectroscopy ; Parameter modification ; Plants (botany) ; Plasmonic nanoantenna ; Plasmons ; Quantum efficiency ; Ring structures ; Spectral sensitivity ; Spontaneous emission ; Spontaneous emission rates ; Structural parameter ; Time domain analysis</subject><ispartof>RSC advances, 2017-01, Vol.7 (4), p.274-28</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-9341c919a9c9daee1cbea8388084f665d9c41db0b19b7898c08f80c97ca562053</citedby><cites>FETCH-LOGICAL-c381t-9341c919a9c9daee1cbea8388084f665d9c41db0b19b7898c08f80c97ca562053</cites><orcidid>0000-0001-6790-4408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-201761$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Yong, Zhengdong</creatorcontrib><creatorcontrib>Gong, Chensheng</creatorcontrib><creatorcontrib>Dong, Yongjiang</creatorcontrib><creatorcontrib>Zhang, Senlin</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><title>Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna</title><title>RSC advances</title><description>We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion. The custom-designed single-element nanoantenna consists of a modified gold ring structure with a bowtie-shaped spike inside. In contrast to the spectral response of extinction, the broadband localized electric field intensity enhancement is achieved over a bandwidth of 850 nm in the near infrared spectrum. Up to 26- and 22-fold field enhancements near the bowtie spike are obtained at the peak and even in the dip region of the extinction spectrum, respectively. Moreover, the nanostructure exhibits high tunability of its spectral features by modifying the structural parameters. We further demonstrate that the proposed nanoantenna can provide broadband spontaneous emission rates and quantum efficiency enhancements when a low-quantum efficiency emitter is introduced. We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion.</description><subject>Broadband</subject><subject>Charge distribution</subject><subject>Efficiency</subject><subject>Efficiency enhancement</subject><subject>Electric field enhancement</subject><subject>Electric field intensities</subject><subject>Electric fields</subject><subject>Emitters</subject><subject>Extinction</subject><subject>Finite difference time domain method</subject><subject>Gold</subject><subject>Infrared devices</subject><subject>Metamaterial antennas</subject><subject>Multipole expansions</subject><subject>Multipoles</subject><subject>Nanoantennas</subject><subject>Near infrared radiation</subject><subject>Near infrared spectra</subject><subject>Near infrared spectroscopy</subject><subject>Parameter modification</subject><subject>Plants (botany)</subject><subject>Plasmonic nanoantenna</subject><subject>Plasmons</subject><subject>Quantum efficiency</subject><subject>Ring structures</subject><subject>Spectral sensitivity</subject><subject>Spontaneous emission</subject><subject>Spontaneous emission rates</subject><subject>Structural parameter</subject><subject>Time domain analysis</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90c9LwzAUB_AiCo65i3eh4k2o5seaJsc5f8JAEPUaXl_TrbNLZtIh8683WlFP5pKE7yeP5CVJDik5o4SrcxQemCgIx51kwMhYZIwItftnvZ-MQliSOEROmaCDBC68g6oEW6WtQ2ibd1OlpjXY-QbTujFt3NoFWDQrY7t07V21wWjKbQppaOy8NVn0fdhCWDkbD1qwDmxnrIWDZK-GNpjR9zxMnq6vHqe32ez-5m46mWXIJe0yxccUFVWgUFVgDMXSgORSEjmuhcgrhWNalaSkqiykkkhkLQmqAiEXjOR8mGR93fBm1ptSr32zAr_VDhp92TxPtPNz_dItNCO0EDT6k97HJ71uTOj00m28jVfUjBFGpeCUR3XaK_QuBG_qn7qU6M-u66l4mHx1fRrxUY99wB_3-ysxP_4v1-uq5h9DwoqY</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Yong, Zhengdong</creator><creator>Gong, Chensheng</creator><creator>Dong, Yongjiang</creator><creator>Zhang, Senlin</creator><creator>He, Sailing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0001-6790-4408</orcidid></search><sort><creationdate>20170101</creationdate><title>Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna</title><author>Yong, Zhengdong ; Gong, Chensheng ; Dong, Yongjiang ; Zhang, Senlin ; He, Sailing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-9341c919a9c9daee1cbea8388084f665d9c41db0b19b7898c08f80c97ca562053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Broadband</topic><topic>Charge distribution</topic><topic>Efficiency</topic><topic>Efficiency enhancement</topic><topic>Electric field enhancement</topic><topic>Electric field intensities</topic><topic>Electric fields</topic><topic>Emitters</topic><topic>Extinction</topic><topic>Finite difference time domain method</topic><topic>Gold</topic><topic>Infrared devices</topic><topic>Metamaterial antennas</topic><topic>Multipole expansions</topic><topic>Multipoles</topic><topic>Nanoantennas</topic><topic>Near infrared radiation</topic><topic>Near infrared spectra</topic><topic>Near infrared spectroscopy</topic><topic>Parameter modification</topic><topic>Plants (botany)</topic><topic>Plasmonic nanoantenna</topic><topic>Plasmons</topic><topic>Quantum efficiency</topic><topic>Ring structures</topic><topic>Spectral sensitivity</topic><topic>Spontaneous emission</topic><topic>Spontaneous emission rates</topic><topic>Structural parameter</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yong, Zhengdong</creatorcontrib><creatorcontrib>Gong, Chensheng</creatorcontrib><creatorcontrib>Dong, Yongjiang</creatorcontrib><creatorcontrib>Zhang, Senlin</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yong, Zhengdong</au><au>Gong, Chensheng</au><au>Dong, Yongjiang</au><au>Zhang, Senlin</au><au>He, Sailing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna</atitle><jtitle>RSC advances</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>7</volume><issue>4</issue><spage>274</spage><epage>28</epage><pages>274-28</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion. The custom-designed single-element nanoantenna consists of a modified gold ring structure with a bowtie-shaped spike inside. In contrast to the spectral response of extinction, the broadband localized electric field intensity enhancement is achieved over a bandwidth of 850 nm in the near infrared spectrum. Up to 26- and 22-fold field enhancements near the bowtie spike are obtained at the peak and even in the dip region of the extinction spectrum, respectively. Moreover, the nanostructure exhibits high tunability of its spectral features by modifying the structural parameters. We further demonstrate that the proposed nanoantenna can provide broadband spontaneous emission rates and quantum efficiency enhancements when a low-quantum efficiency emitter is introduced. We propose a novel design of a broadband plasmonic nanoantenna, investigate it numerically using finite-difference time-domain methods, and explain its performance using the analysis of charge distribution in addition to a multipole expansion.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c6ra26703c</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6790-4408</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2017-01, Vol.7 (4), p.274-28
issn 2046-2069
2046-2069
language eng
recordid cdi_crossref_primary_10_1039_C6RA26703C
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Broadband
Charge distribution
Efficiency
Efficiency enhancement
Electric field enhancement
Electric field intensities
Electric fields
Emitters
Extinction
Finite difference time domain method
Gold
Infrared devices
Metamaterial antennas
Multipole expansions
Multipoles
Nanoantennas
Near infrared radiation
Near infrared spectra
Near infrared spectroscopy
Parameter modification
Plants (botany)
Plasmonic nanoantenna
Plasmons
Quantum efficiency
Ring structures
Spectral sensitivity
Spontaneous emission
Spontaneous emission rates
Structural parameter
Time domain analysis
title Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20localized%20electric%20field%20enhancement%20produced%20by%20a%20single-element%20plasmonic%20nanoantenna&rft.jtitle=RSC%20advances&rft.au=Yong,%20Zhengdong&rft.date=2017-01-01&rft.volume=7&rft.issue=4&rft.spage=274&rft.epage=28&rft.pages=274-28&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c6ra26703c&rft_dat=%3Cproquest_cross%3E2202186313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202186313&rft_id=info:pmid/&rfr_iscdi=true