Mechanisms of peptide hydrolysis by aspartyl and metalloproteases
Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILA...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2016-09, Vol.18 (36), p.2479-2481 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2481 |
---|---|
container_issue | 36 |
container_start_page | 2479 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 18 |
creator | Paul, Thomas J Barman, Arghya Ozbil, Mehmet Bora, Ram Prasad Zhang, Tingting Sharma, Gaurav Hoffmann, Zachary Prabhakar, Rajeev |
description | Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp
−
] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications.
Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. |
doi_str_mv | 10.1039/c6cp02097f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6CP02097F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904218513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-15a016a75027aa7d429c0559b2b41c4ec5ff58ffbc0fb19ed9f3929cf53642ef3</originalsourceid><addsrcrecordid>eNqF0cFLwzAUBvAgipvTi3elRxGqL03TNMdRnAoTPei5pOkLq7RrzesO_e9X3ZxHTwnkx_d4Xxi75HDHQeh7m9gOItDKHbEpjxMRakjj48NdJRN2RvQJAFxyccomkVKcCyWmbP6CdmXWFTUUtC7osOurEoPVUPq2HqiioBgCQ53x_VAHZl0GDfamrtvOtz0aQjpnJ87UhBf7c8Y-Fg_v2VO4fH18zubL0Aql-5BLAzwxSkKkjFFlHGkLUuoiKmJuY7TSOZk6V1hwBddYaif0aJwUSRyhEzN2s8sdJ39tkPq8qchiXZs1thvKuYY44um44P80FWMqKJAjvd1R61sijy7vfNUYP-Qc8u928yzJ3n7aXYz4ep-7KRosD_S3zhFc7YAne3j9-x6xBbkofrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835360705</pqid></control><display><type>article</type><title>Mechanisms of peptide hydrolysis by aspartyl and metalloproteases</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Paul, Thomas J ; Barman, Arghya ; Ozbil, Mehmet ; Bora, Ram Prasad ; Zhang, Tingting ; Sharma, Gaurav ; Hoffmann, Zachary ; Prabhakar, Rajeev</creator><creatorcontrib>Paul, Thomas J ; Barman, Arghya ; Ozbil, Mehmet ; Bora, Ram Prasad ; Zhang, Tingting ; Sharma, Gaurav ; Hoffmann, Zachary ; Prabhakar, Rajeev</creatorcontrib><description>Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp
−
] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications.
Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c6cp02097f</identifier><identifier>PMID: 27711373</identifier><language>eng</language><publisher>England</publisher><subject>Amyloid Precursor Protein Secretases - chemistry ; Amyloid Precursor Protein Secretases - metabolism ; Animals ; Biocatalysis ; Catalytic Domain ; Cattle ; Enzymes ; Hydrolysis ; Industrial applications ; Insulysin - chemistry ; Insulysin - metabolism ; Leucine ; Leucyl Aminopeptidase - chemistry ; Leucyl Aminopeptidase - metabolism ; Ligands ; Peptides ; Peptides - chemistry ; Peptides - metabolism ; Physical chemistry ; Protein Structure, Tertiary ; Residues ; Thermodynamics ; Zinc - chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2016-09, Vol.18 (36), p.2479-2481</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-15a016a75027aa7d429c0559b2b41c4ec5ff58ffbc0fb19ed9f3929cf53642ef3</citedby><cites>FETCH-LOGICAL-c379t-15a016a75027aa7d429c0559b2b41c4ec5ff58ffbc0fb19ed9f3929cf53642ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27711373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Thomas J</creatorcontrib><creatorcontrib>Barman, Arghya</creatorcontrib><creatorcontrib>Ozbil, Mehmet</creatorcontrib><creatorcontrib>Bora, Ram Prasad</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Sharma, Gaurav</creatorcontrib><creatorcontrib>Hoffmann, Zachary</creatorcontrib><creatorcontrib>Prabhakar, Rajeev</creatorcontrib><title>Mechanisms of peptide hydrolysis by aspartyl and metalloproteases</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp
−
] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications.
Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications.</description><subject>Amyloid Precursor Protein Secretases - chemistry</subject><subject>Amyloid Precursor Protein Secretases - metabolism</subject><subject>Animals</subject><subject>Biocatalysis</subject><subject>Catalytic Domain</subject><subject>Cattle</subject><subject>Enzymes</subject><subject>Hydrolysis</subject><subject>Industrial applications</subject><subject>Insulysin - chemistry</subject><subject>Insulysin - metabolism</subject><subject>Leucine</subject><subject>Leucyl Aminopeptidase - chemistry</subject><subject>Leucyl Aminopeptidase - metabolism</subject><subject>Ligands</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Physical chemistry</subject><subject>Protein Structure, Tertiary</subject><subject>Residues</subject><subject>Thermodynamics</subject><subject>Zinc - chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFLwzAUBvAgipvTi3elRxGqL03TNMdRnAoTPei5pOkLq7RrzesO_e9X3ZxHTwnkx_d4Xxi75HDHQeh7m9gOItDKHbEpjxMRakjj48NdJRN2RvQJAFxyccomkVKcCyWmbP6CdmXWFTUUtC7osOurEoPVUPq2HqiioBgCQ53x_VAHZl0GDfamrtvOtz0aQjpnJ87UhBf7c8Y-Fg_v2VO4fH18zubL0Aql-5BLAzwxSkKkjFFlHGkLUuoiKmJuY7TSOZk6V1hwBddYaif0aJwUSRyhEzN2s8sdJ39tkPq8qchiXZs1thvKuYY44um44P80FWMqKJAjvd1R61sijy7vfNUYP-Qc8u928yzJ3n7aXYz4ep-7KRosD_S3zhFc7YAne3j9-x6xBbkofrI</recordid><startdate>20160914</startdate><enddate>20160914</enddate><creator>Paul, Thomas J</creator><creator>Barman, Arghya</creator><creator>Ozbil, Mehmet</creator><creator>Bora, Ram Prasad</creator><creator>Zhang, Tingting</creator><creator>Sharma, Gaurav</creator><creator>Hoffmann, Zachary</creator><creator>Prabhakar, Rajeev</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160914</creationdate><title>Mechanisms of peptide hydrolysis by aspartyl and metalloproteases</title><author>Paul, Thomas J ; Barman, Arghya ; Ozbil, Mehmet ; Bora, Ram Prasad ; Zhang, Tingting ; Sharma, Gaurav ; Hoffmann, Zachary ; Prabhakar, Rajeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-15a016a75027aa7d429c0559b2b41c4ec5ff58ffbc0fb19ed9f3929cf53642ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amyloid Precursor Protein Secretases - chemistry</topic><topic>Amyloid Precursor Protein Secretases - metabolism</topic><topic>Animals</topic><topic>Biocatalysis</topic><topic>Catalytic Domain</topic><topic>Cattle</topic><topic>Enzymes</topic><topic>Hydrolysis</topic><topic>Industrial applications</topic><topic>Insulysin - chemistry</topic><topic>Insulysin - metabolism</topic><topic>Leucine</topic><topic>Leucyl Aminopeptidase - chemistry</topic><topic>Leucyl Aminopeptidase - metabolism</topic><topic>Ligands</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Physical chemistry</topic><topic>Protein Structure, Tertiary</topic><topic>Residues</topic><topic>Thermodynamics</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Thomas J</creatorcontrib><creatorcontrib>Barman, Arghya</creatorcontrib><creatorcontrib>Ozbil, Mehmet</creatorcontrib><creatorcontrib>Bora, Ram Prasad</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Sharma, Gaurav</creatorcontrib><creatorcontrib>Hoffmann, Zachary</creatorcontrib><creatorcontrib>Prabhakar, Rajeev</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Thomas J</au><au>Barman, Arghya</au><au>Ozbil, Mehmet</au><au>Bora, Ram Prasad</au><au>Zhang, Tingting</au><au>Sharma, Gaurav</au><au>Hoffmann, Zachary</au><au>Prabhakar, Rajeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of peptide hydrolysis by aspartyl and metalloproteases</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-09-14</date><risdate>2016</risdate><volume>18</volume><issue>36</issue><spage>2479</spage><epage>2481</epage><pages>2479-2481</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp
−
] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications.
Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications.</abstract><cop>England</cop><pmid>27711373</pmid><doi>10.1039/c6cp02097f</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2016-09, Vol.18 (36), p.2479-2481 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C6CP02097F |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Amyloid Precursor Protein Secretases - chemistry Amyloid Precursor Protein Secretases - metabolism Animals Biocatalysis Catalytic Domain Cattle Enzymes Hydrolysis Industrial applications Insulysin - chemistry Insulysin - metabolism Leucine Leucyl Aminopeptidase - chemistry Leucyl Aminopeptidase - metabolism Ligands Peptides Peptides - chemistry Peptides - metabolism Physical chemistry Protein Structure, Tertiary Residues Thermodynamics Zinc - chemistry |
title | Mechanisms of peptide hydrolysis by aspartyl and metalloproteases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20peptide%20hydrolysis%20by%20aspartyl%20and%20metalloproteases&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Paul,%20Thomas%20J&rft.date=2016-09-14&rft.volume=18&rft.issue=36&rft.spage=2479&rft.epage=2481&rft.pages=2479-2481&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c6cp02097f&rft_dat=%3Cproquest_cross%3E1904218513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835360705&rft_id=info:pmid/27711373&rfr_iscdi=true |