Mechanisms of peptide hydrolysis by aspartyl and metalloproteases

Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2016-09, Vol.18 (36), p.2479-2481
Hauptverfasser: Paul, Thomas J, Barman, Arghya, Ozbil, Mehmet, Bora, Ram Prasad, Zhang, Tingting, Sharma, Gaurav, Hoffmann, Zachary, Prabhakar, Rajeev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2481
container_issue 36
container_start_page 2479
container_title Physical chemistry chemical physics : PCCP
container_volume 18
creator Paul, Thomas J
Barman, Arghya
Ozbil, Mehmet
Bora, Ram Prasad
Zhang, Tingting
Sharma, Gaurav
Hoffmann, Zachary
Prabhakar, Rajeev
description Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp − ] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications. Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications.
doi_str_mv 10.1039/c6cp02097f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6CP02097F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904218513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-15a016a75027aa7d429c0559b2b41c4ec5ff58ffbc0fb19ed9f3929cf53642ef3</originalsourceid><addsrcrecordid>eNqF0cFLwzAUBvAgipvTi3elRxGqL03TNMdRnAoTPei5pOkLq7RrzesO_e9X3ZxHTwnkx_d4Xxi75HDHQeh7m9gOItDKHbEpjxMRakjj48NdJRN2RvQJAFxyccomkVKcCyWmbP6CdmXWFTUUtC7osOurEoPVUPq2HqiioBgCQ53x_VAHZl0GDfamrtvOtz0aQjpnJ87UhBf7c8Y-Fg_v2VO4fH18zubL0Aql-5BLAzwxSkKkjFFlHGkLUuoiKmJuY7TSOZk6V1hwBddYaif0aJwUSRyhEzN2s8sdJ39tkPq8qchiXZs1thvKuYY44um44P80FWMqKJAjvd1R61sijy7vfNUYP-Qc8u928yzJ3n7aXYz4ep-7KRosD_S3zhFc7YAne3j9-x6xBbkofrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835360705</pqid></control><display><type>article</type><title>Mechanisms of peptide hydrolysis by aspartyl and metalloproteases</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Paul, Thomas J ; Barman, Arghya ; Ozbil, Mehmet ; Bora, Ram Prasad ; Zhang, Tingting ; Sharma, Gaurav ; Hoffmann, Zachary ; Prabhakar, Rajeev</creator><creatorcontrib>Paul, Thomas J ; Barman, Arghya ; Ozbil, Mehmet ; Bora, Ram Prasad ; Zhang, Tingting ; Sharma, Gaurav ; Hoffmann, Zachary ; Prabhakar, Rajeev</creatorcontrib><description>Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp − ] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications. Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c6cp02097f</identifier><identifier>PMID: 27711373</identifier><language>eng</language><publisher>England</publisher><subject>Amyloid Precursor Protein Secretases - chemistry ; Amyloid Precursor Protein Secretases - metabolism ; Animals ; Biocatalysis ; Catalytic Domain ; Cattle ; Enzymes ; Hydrolysis ; Industrial applications ; Insulysin - chemistry ; Insulysin - metabolism ; Leucine ; Leucyl Aminopeptidase - chemistry ; Leucyl Aminopeptidase - metabolism ; Ligands ; Peptides ; Peptides - chemistry ; Peptides - metabolism ; Physical chemistry ; Protein Structure, Tertiary ; Residues ; Thermodynamics ; Zinc - chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2016-09, Vol.18 (36), p.2479-2481</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-15a016a75027aa7d429c0559b2b41c4ec5ff58ffbc0fb19ed9f3929cf53642ef3</citedby><cites>FETCH-LOGICAL-c379t-15a016a75027aa7d429c0559b2b41c4ec5ff58ffbc0fb19ed9f3929cf53642ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27711373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Thomas J</creatorcontrib><creatorcontrib>Barman, Arghya</creatorcontrib><creatorcontrib>Ozbil, Mehmet</creatorcontrib><creatorcontrib>Bora, Ram Prasad</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Sharma, Gaurav</creatorcontrib><creatorcontrib>Hoffmann, Zachary</creatorcontrib><creatorcontrib>Prabhakar, Rajeev</creatorcontrib><title>Mechanisms of peptide hydrolysis by aspartyl and metalloproteases</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp − ] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications. Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications.</description><subject>Amyloid Precursor Protein Secretases - chemistry</subject><subject>Amyloid Precursor Protein Secretases - metabolism</subject><subject>Animals</subject><subject>Biocatalysis</subject><subject>Catalytic Domain</subject><subject>Cattle</subject><subject>Enzymes</subject><subject>Hydrolysis</subject><subject>Industrial applications</subject><subject>Insulysin - chemistry</subject><subject>Insulysin - metabolism</subject><subject>Leucine</subject><subject>Leucyl Aminopeptidase - chemistry</subject><subject>Leucyl Aminopeptidase - metabolism</subject><subject>Ligands</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Physical chemistry</subject><subject>Protein Structure, Tertiary</subject><subject>Residues</subject><subject>Thermodynamics</subject><subject>Zinc - chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFLwzAUBvAgipvTi3elRxGqL03TNMdRnAoTPei5pOkLq7RrzesO_e9X3ZxHTwnkx_d4Xxi75HDHQeh7m9gOItDKHbEpjxMRakjj48NdJRN2RvQJAFxyccomkVKcCyWmbP6CdmXWFTUUtC7osOurEoPVUPq2HqiioBgCQ53x_VAHZl0GDfamrtvOtz0aQjpnJ87UhBf7c8Y-Fg_v2VO4fH18zubL0Aql-5BLAzwxSkKkjFFlHGkLUuoiKmJuY7TSOZk6V1hwBddYaif0aJwUSRyhEzN2s8sdJ39tkPq8qchiXZs1thvKuYY44um44P80FWMqKJAjvd1R61sijy7vfNUYP-Qc8u928yzJ3n7aXYz4ep-7KRosD_S3zhFc7YAne3j9-x6xBbkofrI</recordid><startdate>20160914</startdate><enddate>20160914</enddate><creator>Paul, Thomas J</creator><creator>Barman, Arghya</creator><creator>Ozbil, Mehmet</creator><creator>Bora, Ram Prasad</creator><creator>Zhang, Tingting</creator><creator>Sharma, Gaurav</creator><creator>Hoffmann, Zachary</creator><creator>Prabhakar, Rajeev</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160914</creationdate><title>Mechanisms of peptide hydrolysis by aspartyl and metalloproteases</title><author>Paul, Thomas J ; Barman, Arghya ; Ozbil, Mehmet ; Bora, Ram Prasad ; Zhang, Tingting ; Sharma, Gaurav ; Hoffmann, Zachary ; Prabhakar, Rajeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-15a016a75027aa7d429c0559b2b41c4ec5ff58ffbc0fb19ed9f3929cf53642ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amyloid Precursor Protein Secretases - chemistry</topic><topic>Amyloid Precursor Protein Secretases - metabolism</topic><topic>Animals</topic><topic>Biocatalysis</topic><topic>Catalytic Domain</topic><topic>Cattle</topic><topic>Enzymes</topic><topic>Hydrolysis</topic><topic>Industrial applications</topic><topic>Insulysin - chemistry</topic><topic>Insulysin - metabolism</topic><topic>Leucine</topic><topic>Leucyl Aminopeptidase - chemistry</topic><topic>Leucyl Aminopeptidase - metabolism</topic><topic>Ligands</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Physical chemistry</topic><topic>Protein Structure, Tertiary</topic><topic>Residues</topic><topic>Thermodynamics</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Thomas J</creatorcontrib><creatorcontrib>Barman, Arghya</creatorcontrib><creatorcontrib>Ozbil, Mehmet</creatorcontrib><creatorcontrib>Bora, Ram Prasad</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Sharma, Gaurav</creatorcontrib><creatorcontrib>Hoffmann, Zachary</creatorcontrib><creatorcontrib>Prabhakar, Rajeev</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Thomas J</au><au>Barman, Arghya</au><au>Ozbil, Mehmet</au><au>Bora, Ram Prasad</au><au>Zhang, Tingting</au><au>Sharma, Gaurav</au><au>Hoffmann, Zachary</au><au>Prabhakar, Rajeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of peptide hydrolysis by aspartyl and metalloproteases</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-09-14</date><risdate>2016</risdate><volume>18</volume><issue>36</issue><spage>2479</spage><epage>2481</epage><pages>2479-2481</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp − ] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications. Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications.</abstract><cop>England</cop><pmid>27711373</pmid><doi>10.1039/c6cp02097f</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2016-09, Vol.18 (36), p.2479-2481
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_C6CP02097F
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Amyloid Precursor Protein Secretases - chemistry
Amyloid Precursor Protein Secretases - metabolism
Animals
Biocatalysis
Catalytic Domain
Cattle
Enzymes
Hydrolysis
Industrial applications
Insulysin - chemistry
Insulysin - metabolism
Leucine
Leucyl Aminopeptidase - chemistry
Leucyl Aminopeptidase - metabolism
Ligands
Peptides
Peptides - chemistry
Peptides - metabolism
Physical chemistry
Protein Structure, Tertiary
Residues
Thermodynamics
Zinc - chemistry
title Mechanisms of peptide hydrolysis by aspartyl and metalloproteases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20peptide%20hydrolysis%20by%20aspartyl%20and%20metalloproteases&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Paul,%20Thomas%20J&rft.date=2016-09-14&rft.volume=18&rft.issue=36&rft.spage=2479&rft.epage=2481&rft.pages=2479-2481&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c6cp02097f&rft_dat=%3Cproquest_cross%3E1904218513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835360705&rft_id=info:pmid/27711373&rfr_iscdi=true