Contrasting 1D tunnel-structured and 2D layered polymorphs of V 2 O 5 : relating crystal structure and bonding to band gaps and electronic structure

New V 2 O 5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their def...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2016, Vol.18 (23), p.15798-15806
Hauptverfasser: Tolhurst, Thomas M., Leedahl, Brett, Andrews, Justin L., Marley, Peter M., Banerjee, Sarbajit, Moewes, Alexander
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15806
container_issue 23
container_start_page 15798
container_title Physical chemistry chemical physics : PCCP
container_volume 18
creator Tolhurst, Thomas M.
Leedahl, Brett
Andrews, Justin L.
Marley, Peter M.
Banerjee, Sarbajit
Moewes, Alexander
description New V 2 O 5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their defining structure–property relationships. We present a characterization of the band gap and electronic structure of nanowires of the novel ζ-phase and the orthorhombic α-phase of V 2 O 5 using X-ray spectroscopy and density functional theory calculations. The band gap is found to decrease from 1.90 ± 0.20 eV in the α-phase to 1.50 ± 0.20 eV in the ζ-phase, accompanied by the loss of the α-phase's characteristic split-off d xy band in the ζ-phase. States of d xy origin continue to dominate the conduction band edge in the new polymorph but the inequivalence of the vanadium atoms and the increased local symmetry of [VO 6 ] octahedra results in these states overlapping with the rest of the V 3d conduction band. ζ-V 2 O 5 exhibits anisotropic conductivity along the b direction, defining a 1D tunnel, in contrast to α-V 2 O 5 where the anisotropic conductivity is along the ab layers. We explain the structural origins of the differences in electronic properties that exist between the α- and ζ-phase.
doi_str_mv 10.1039/C6CP02096H
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6CP02096H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C6CP02096H</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76H-7c190c289255f15088d1adceacf8f09ea3dfb6cfe8f2ef4fc6ce4a481a685d713</originalsourceid><addsrcrecordid>eNpFkM9KAzEYxIMoWKsXn-A7C6vJ_slmvcnWWqFQD8Xrkn5JaiVNliQ97Hv4wLJV2tPMMMzvMITcM_rIaNE8tbz9oDlt-OKCTFjJi6yhorw8-Zpfk5sYvymlrGLFhPy03qUgY9q5LbAZpINz2mYxhQOmQ9AKpFOQz8DKQY-x93bY-9B_RfAGPiGHFVTwDEFbeYRgGGKSFk6II2HjnRrb5GEz5q3s47HQVmMK3u3wvLglV0baqO_-dUrW89d1u8iWq7f39mWZYc0XWY2soZiLJq8qwyoqhGJSoZZohKGNloUyG45GC5NrUxrkqEtZCia5qFTNiil5-MNi8DEGbbo-7PYyDB2j3Xhnd76z-AVq5Gq_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Contrasting 1D tunnel-structured and 2D layered polymorphs of V 2 O 5 : relating crystal structure and bonding to band gaps and electronic structure</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Tolhurst, Thomas M. ; Leedahl, Brett ; Andrews, Justin L. ; Marley, Peter M. ; Banerjee, Sarbajit ; Moewes, Alexander</creator><creatorcontrib>Tolhurst, Thomas M. ; Leedahl, Brett ; Andrews, Justin L. ; Marley, Peter M. ; Banerjee, Sarbajit ; Moewes, Alexander</creatorcontrib><description>New V 2 O 5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their defining structure–property relationships. We present a characterization of the band gap and electronic structure of nanowires of the novel ζ-phase and the orthorhombic α-phase of V 2 O 5 using X-ray spectroscopy and density functional theory calculations. The band gap is found to decrease from 1.90 ± 0.20 eV in the α-phase to 1.50 ± 0.20 eV in the ζ-phase, accompanied by the loss of the α-phase's characteristic split-off d xy band in the ζ-phase. States of d xy origin continue to dominate the conduction band edge in the new polymorph but the inequivalence of the vanadium atoms and the increased local symmetry of [VO 6 ] octahedra results in these states overlapping with the rest of the V 3d conduction band. ζ-V 2 O 5 exhibits anisotropic conductivity along the b direction, defining a 1D tunnel, in contrast to α-V 2 O 5 where the anisotropic conductivity is along the ab layers. We explain the structural origins of the differences in electronic properties that exist between the α- and ζ-phase.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/C6CP02096H</identifier><language>eng</language><ispartof>Physical chemistry chemical physics : PCCP, 2016, Vol.18 (23), p.15798-15806</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76H-7c190c289255f15088d1adceacf8f09ea3dfb6cfe8f2ef4fc6ce4a481a685d713</citedby><cites>FETCH-LOGICAL-c76H-7c190c289255f15088d1adceacf8f09ea3dfb6cfe8f2ef4fc6ce4a481a685d713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Tolhurst, Thomas M.</creatorcontrib><creatorcontrib>Leedahl, Brett</creatorcontrib><creatorcontrib>Andrews, Justin L.</creatorcontrib><creatorcontrib>Marley, Peter M.</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><creatorcontrib>Moewes, Alexander</creatorcontrib><title>Contrasting 1D tunnel-structured and 2D layered polymorphs of V 2 O 5 : relating crystal structure and bonding to band gaps and electronic structure</title><title>Physical chemistry chemical physics : PCCP</title><description>New V 2 O 5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their defining structure–property relationships. We present a characterization of the band gap and electronic structure of nanowires of the novel ζ-phase and the orthorhombic α-phase of V 2 O 5 using X-ray spectroscopy and density functional theory calculations. The band gap is found to decrease from 1.90 ± 0.20 eV in the α-phase to 1.50 ± 0.20 eV in the ζ-phase, accompanied by the loss of the α-phase's characteristic split-off d xy band in the ζ-phase. States of d xy origin continue to dominate the conduction band edge in the new polymorph but the inequivalence of the vanadium atoms and the increased local symmetry of [VO 6 ] octahedra results in these states overlapping with the rest of the V 3d conduction band. ζ-V 2 O 5 exhibits anisotropic conductivity along the b direction, defining a 1D tunnel, in contrast to α-V 2 O 5 where the anisotropic conductivity is along the ab layers. We explain the structural origins of the differences in electronic properties that exist between the α- and ζ-phase.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkM9KAzEYxIMoWKsXn-A7C6vJ_slmvcnWWqFQD8Xrkn5JaiVNliQ97Hv4wLJV2tPMMMzvMITcM_rIaNE8tbz9oDlt-OKCTFjJi6yhorw8-Zpfk5sYvymlrGLFhPy03qUgY9q5LbAZpINz2mYxhQOmQ9AKpFOQz8DKQY-x93bY-9B_RfAGPiGHFVTwDEFbeYRgGGKSFk6II2HjnRrb5GEz5q3s47HQVmMK3u3wvLglV0baqO_-dUrW89d1u8iWq7f39mWZYc0XWY2soZiLJq8qwyoqhGJSoZZohKGNloUyG45GC5NrUxrkqEtZCia5qFTNiil5-MNi8DEGbbo-7PYyDB2j3Xhnd76z-AVq5Gq_</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Tolhurst, Thomas M.</creator><creator>Leedahl, Brett</creator><creator>Andrews, Justin L.</creator><creator>Marley, Peter M.</creator><creator>Banerjee, Sarbajit</creator><creator>Moewes, Alexander</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2016</creationdate><title>Contrasting 1D tunnel-structured and 2D layered polymorphs of V 2 O 5 : relating crystal structure and bonding to band gaps and electronic structure</title><author>Tolhurst, Thomas M. ; Leedahl, Brett ; Andrews, Justin L. ; Marley, Peter M. ; Banerjee, Sarbajit ; Moewes, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76H-7c190c289255f15088d1adceacf8f09ea3dfb6cfe8f2ef4fc6ce4a481a685d713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tolhurst, Thomas M.</creatorcontrib><creatorcontrib>Leedahl, Brett</creatorcontrib><creatorcontrib>Andrews, Justin L.</creatorcontrib><creatorcontrib>Marley, Peter M.</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><creatorcontrib>Moewes, Alexander</creatorcontrib><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tolhurst, Thomas M.</au><au>Leedahl, Brett</au><au>Andrews, Justin L.</au><au>Marley, Peter M.</au><au>Banerjee, Sarbajit</au><au>Moewes, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrasting 1D tunnel-structured and 2D layered polymorphs of V 2 O 5 : relating crystal structure and bonding to band gaps and electronic structure</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2016</date><risdate>2016</risdate><volume>18</volume><issue>23</issue><spage>15798</spage><epage>15806</epage><pages>15798-15806</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>New V 2 O 5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their defining structure–property relationships. We present a characterization of the band gap and electronic structure of nanowires of the novel ζ-phase and the orthorhombic α-phase of V 2 O 5 using X-ray spectroscopy and density functional theory calculations. The band gap is found to decrease from 1.90 ± 0.20 eV in the α-phase to 1.50 ± 0.20 eV in the ζ-phase, accompanied by the loss of the α-phase's characteristic split-off d xy band in the ζ-phase. States of d xy origin continue to dominate the conduction band edge in the new polymorph but the inequivalence of the vanadium atoms and the increased local symmetry of [VO 6 ] octahedra results in these states overlapping with the rest of the V 3d conduction band. ζ-V 2 O 5 exhibits anisotropic conductivity along the b direction, defining a 1D tunnel, in contrast to α-V 2 O 5 where the anisotropic conductivity is along the ab layers. We explain the structural origins of the differences in electronic properties that exist between the α- and ζ-phase.</abstract><doi>10.1039/C6CP02096H</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2016, Vol.18 (23), p.15798-15806
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_C6CP02096H
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Contrasting 1D tunnel-structured and 2D layered polymorphs of V 2 O 5 : relating crystal structure and bonding to band gaps and electronic structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrasting%201D%20tunnel-structured%20and%202D%20layered%20polymorphs%20of%20V%202%20O%205%20:%20relating%20crystal%20structure%20and%20bonding%20to%20band%20gaps%20and%20electronic%20structure&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Tolhurst,%20Thomas%20M.&rft.date=2016&rft.volume=18&rft.issue=23&rft.spage=15798&rft.epage=15806&rft.pages=15798-15806&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/C6CP02096H&rft_dat=%3Ccrossref%3E10_1039_C6CP02096H%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true