Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis
Double-hole doping is an effective approach to engineer the band structures of semiconductors for enhancing the photoelectrochemical performance. Here, we explore the anionic monodoping ( i.e. N, C, and P) and codoping ( i.e. N + N, C + S, and N + P pairs) effects on the electronic structures and ph...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2016, Vol.18 (26), p.17517-17524 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17524 |
---|---|
container_issue | 26 |
container_start_page | 17517 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 18 |
creator | Wang, Jiajun Huang, Jing Meng, Jie Li, Qunxiang Yang, Jinlong |
description | Double-hole doping is an effective approach to engineer the band structures of semiconductors for enhancing the photoelectrochemical performance. Here, we explore the anionic monodoping (
i.e.
N, C, and P) and codoping (
i.e.
N + N, C + S, and N + P pairs) effects on the electronic structures and photocatalytic activities of ZrO
2
by performing extensive density functional theory calculations. Upon anionic monodoping, several unoccupied impurity states appear within the band gap, which may trap the photogenerated carriers and then reduce the photocatalytic efficiency. Remarkably, double-hole doping
via
introducing three anionic (N + N), (C + S), and (N + P) codoping pairs in ZrO
2
can not only effectively narrow the band gap, but can also create several fully filled delocalized intermediate bands for preventing the recombination of the photogenerated electron–hole pairs. Moreover, the band edge positions matching well with the redox potentials of water and the improved visible light absorption ability indicate that the three examined codoped ZrO
2
systems are promising photocatalysts for visible light water splitting. In short, double-hole doping
via
anionic pairs provides an effective path to tune the huge-gap semiconductor band structures and to develop high efficient catalysts for solar-driven water splitting. |
doi_str_mv | 10.1039/C6CP02047J |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6CP02047J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C6CP02047J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76J-251036354375d2a029b715aadaf1ba1951cf3a2455b949704f171e7b8bc9c09d3</originalsourceid><addsrcrecordid>eNpFkMtKAzEARYMoWKsbvyBrIZrnpFnKqNVSqEJXboY8ZyJTMyQzQv_eFkVX92zu5XIAuCb4lmCm7uqqfsUUc7k6ATPCK4YUXvDTP5bVObgo5QNjTARhM_D2kCbTe9Sl3kObXBq8g93UetTqARa_izZ9usmOKcP3vIEUhgN9xRKPrT623QiHLo3J6lH3-xLLJTgLui_-6jfnYPv0uK2f0XqzfKnv18jKaoWoOPytmOBMCkc1pspIIrR2OhCjiRLEBqYpF8IoriTmgUjipVkYqyxWjs3Bzc-szamU7EMz5LjTed8Q3BxdNP8u2Ddrq1Ey</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Jiajun ; Huang, Jing ; Meng, Jie ; Li, Qunxiang ; Yang, Jinlong</creator><creatorcontrib>Wang, Jiajun ; Huang, Jing ; Meng, Jie ; Li, Qunxiang ; Yang, Jinlong</creatorcontrib><description>Double-hole doping is an effective approach to engineer the band structures of semiconductors for enhancing the photoelectrochemical performance. Here, we explore the anionic monodoping (
i.e.
N, C, and P) and codoping (
i.e.
N + N, C + S, and N + P pairs) effects on the electronic structures and photocatalytic activities of ZrO
2
by performing extensive density functional theory calculations. Upon anionic monodoping, several unoccupied impurity states appear within the band gap, which may trap the photogenerated carriers and then reduce the photocatalytic efficiency. Remarkably, double-hole doping
via
introducing three anionic (N + N), (C + S), and (N + P) codoping pairs in ZrO
2
can not only effectively narrow the band gap, but can also create several fully filled delocalized intermediate bands for preventing the recombination of the photogenerated electron–hole pairs. Moreover, the band edge positions matching well with the redox potentials of water and the improved visible light absorption ability indicate that the three examined codoped ZrO
2
systems are promising photocatalysts for visible light water splitting. In short, double-hole doping
via
anionic pairs provides an effective path to tune the huge-gap semiconductor band structures and to develop high efficient catalysts for solar-driven water splitting.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/C6CP02047J</identifier><language>eng</language><ispartof>Physical chemistry chemical physics : PCCP, 2016, Vol.18 (26), p.17517-17524</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76J-251036354375d2a029b715aadaf1ba1951cf3a2455b949704f171e7b8bc9c09d3</citedby><cites>FETCH-LOGICAL-c76J-251036354375d2a029b715aadaf1ba1951cf3a2455b949704f171e7b8bc9c09d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930</link.rule.ids></links><search><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Meng, Jie</creatorcontrib><creatorcontrib>Li, Qunxiang</creatorcontrib><creatorcontrib>Yang, Jinlong</creatorcontrib><title>Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis</title><title>Physical chemistry chemical physics : PCCP</title><description>Double-hole doping is an effective approach to engineer the band structures of semiconductors for enhancing the photoelectrochemical performance. Here, we explore the anionic monodoping (
i.e.
N, C, and P) and codoping (
i.e.
N + N, C + S, and N + P pairs) effects on the electronic structures and photocatalytic activities of ZrO
2
by performing extensive density functional theory calculations. Upon anionic monodoping, several unoccupied impurity states appear within the band gap, which may trap the photogenerated carriers and then reduce the photocatalytic efficiency. Remarkably, double-hole doping
via
introducing three anionic (N + N), (C + S), and (N + P) codoping pairs in ZrO
2
can not only effectively narrow the band gap, but can also create several fully filled delocalized intermediate bands for preventing the recombination of the photogenerated electron–hole pairs. Moreover, the band edge positions matching well with the redox potentials of water and the improved visible light absorption ability indicate that the three examined codoped ZrO
2
systems are promising photocatalysts for visible light water splitting. In short, double-hole doping
via
anionic pairs provides an effective path to tune the huge-gap semiconductor band structures and to develop high efficient catalysts for solar-driven water splitting.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKAzEARYMoWKsbvyBrIZrnpFnKqNVSqEJXboY8ZyJTMyQzQv_eFkVX92zu5XIAuCb4lmCm7uqqfsUUc7k6ATPCK4YUXvDTP5bVObgo5QNjTARhM_D2kCbTe9Sl3kObXBq8g93UetTqARa_izZ9usmOKcP3vIEUhgN9xRKPrT623QiHLo3J6lH3-xLLJTgLui_-6jfnYPv0uK2f0XqzfKnv18jKaoWoOPytmOBMCkc1pspIIrR2OhCjiRLEBqYpF8IoriTmgUjipVkYqyxWjs3Bzc-szamU7EMz5LjTed8Q3BxdNP8u2Ddrq1Ey</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Wang, Jiajun</creator><creator>Huang, Jing</creator><creator>Meng, Jie</creator><creator>Li, Qunxiang</creator><creator>Yang, Jinlong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2016</creationdate><title>Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis</title><author>Wang, Jiajun ; Huang, Jing ; Meng, Jie ; Li, Qunxiang ; Yang, Jinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76J-251036354375d2a029b715aadaf1ba1951cf3a2455b949704f171e7b8bc9c09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Meng, Jie</creatorcontrib><creatorcontrib>Li, Qunxiang</creatorcontrib><creatorcontrib>Yang, Jinlong</creatorcontrib><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiajun</au><au>Huang, Jing</au><au>Meng, Jie</au><au>Li, Qunxiang</au><au>Yang, Jinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2016</date><risdate>2016</risdate><volume>18</volume><issue>26</issue><spage>17517</spage><epage>17524</epage><pages>17517-17524</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Double-hole doping is an effective approach to engineer the band structures of semiconductors for enhancing the photoelectrochemical performance. Here, we explore the anionic monodoping (
i.e.
N, C, and P) and codoping (
i.e.
N + N, C + S, and N + P pairs) effects on the electronic structures and photocatalytic activities of ZrO
2
by performing extensive density functional theory calculations. Upon anionic monodoping, several unoccupied impurity states appear within the band gap, which may trap the photogenerated carriers and then reduce the photocatalytic efficiency. Remarkably, double-hole doping
via
introducing three anionic (N + N), (C + S), and (N + P) codoping pairs in ZrO
2
can not only effectively narrow the band gap, but can also create several fully filled delocalized intermediate bands for preventing the recombination of the photogenerated electron–hole pairs. Moreover, the band edge positions matching well with the redox potentials of water and the improved visible light absorption ability indicate that the three examined codoped ZrO
2
systems are promising photocatalysts for visible light water splitting. In short, double-hole doping
via
anionic pairs provides an effective path to tune the huge-gap semiconductor band structures and to develop high efficient catalysts for solar-driven water splitting.</abstract><doi>10.1039/C6CP02047J</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2016, Vol.18 (26), p.17517-17524 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C6CP02047J |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
title | Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double-hole%20codoped%20huge-gap%20semiconductor%20ZrO%202%20for%20visible-light%20photocatalysis&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wang,%20Jiajun&rft.date=2016&rft.volume=18&rft.issue=26&rft.spage=17517&rft.epage=17524&rft.pages=17517-17524&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/C6CP02047J&rft_dat=%3Ccrossref%3E10_1039_C6CP02047J%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |