Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis

Double-hole doping is an effective approach to engineer the band structures of semiconductors for enhancing the photoelectrochemical performance. Here, we explore the anionic monodoping ( i.e. N, C, and P) and codoping ( i.e. N + N, C + S, and N + P pairs) effects on the electronic structures and ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2016, Vol.18 (26), p.17517-17524
Hauptverfasser: Wang, Jiajun, Huang, Jing, Meng, Jie, Li, Qunxiang, Yang, Jinlong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17524
container_issue 26
container_start_page 17517
container_title Physical chemistry chemical physics : PCCP
container_volume 18
creator Wang, Jiajun
Huang, Jing
Meng, Jie
Li, Qunxiang
Yang, Jinlong
description Double-hole doping is an effective approach to engineer the band structures of semiconductors for enhancing the photoelectrochemical performance. Here, we explore the anionic monodoping ( i.e. N, C, and P) and codoping ( i.e. N + N, C + S, and N + P pairs) effects on the electronic structures and photocatalytic activities of ZrO 2 by performing extensive density functional theory calculations. Upon anionic monodoping, several unoccupied impurity states appear within the band gap, which may trap the photogenerated carriers and then reduce the photocatalytic efficiency. Remarkably, double-hole doping via introducing three anionic (N + N), (C + S), and (N + P) codoping pairs in ZrO 2 can not only effectively narrow the band gap, but can also create several fully filled delocalized intermediate bands for preventing the recombination of the photogenerated electron–hole pairs. Moreover, the band edge positions matching well with the redox potentials of water and the improved visible light absorption ability indicate that the three examined codoped ZrO 2 systems are promising photocatalysts for visible light water splitting. In short, double-hole doping via anionic pairs provides an effective path to tune the huge-gap semiconductor band structures and to develop high efficient catalysts for solar-driven water splitting.
doi_str_mv 10.1039/C6CP02047J
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6CP02047J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C6CP02047J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76J-251036354375d2a029b715aadaf1ba1951cf3a2455b949704f171e7b8bc9c09d3</originalsourceid><addsrcrecordid>eNpFkMtKAzEARYMoWKsbvyBrIZrnpFnKqNVSqEJXboY8ZyJTMyQzQv_eFkVX92zu5XIAuCb4lmCm7uqqfsUUc7k6ATPCK4YUXvDTP5bVObgo5QNjTARhM_D2kCbTe9Sl3kObXBq8g93UetTqARa_izZ9usmOKcP3vIEUhgN9xRKPrT623QiHLo3J6lH3-xLLJTgLui_-6jfnYPv0uK2f0XqzfKnv18jKaoWoOPytmOBMCkc1pspIIrR2OhCjiRLEBqYpF8IoriTmgUjipVkYqyxWjs3Bzc-szamU7EMz5LjTed8Q3BxdNP8u2Ddrq1Ey</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Jiajun ; Huang, Jing ; Meng, Jie ; Li, Qunxiang ; Yang, Jinlong</creator><creatorcontrib>Wang, Jiajun ; Huang, Jing ; Meng, Jie ; Li, Qunxiang ; Yang, Jinlong</creatorcontrib><description>Double-hole doping is an effective approach to engineer the band structures of semiconductors for enhancing the photoelectrochemical performance. Here, we explore the anionic monodoping ( i.e. N, C, and P) and codoping ( i.e. N + N, C + S, and N + P pairs) effects on the electronic structures and photocatalytic activities of ZrO 2 by performing extensive density functional theory calculations. Upon anionic monodoping, several unoccupied impurity states appear within the band gap, which may trap the photogenerated carriers and then reduce the photocatalytic efficiency. Remarkably, double-hole doping via introducing three anionic (N + N), (C + S), and (N + P) codoping pairs in ZrO 2 can not only effectively narrow the band gap, but can also create several fully filled delocalized intermediate bands for preventing the recombination of the photogenerated electron–hole pairs. Moreover, the band edge positions matching well with the redox potentials of water and the improved visible light absorption ability indicate that the three examined codoped ZrO 2 systems are promising photocatalysts for visible light water splitting. In short, double-hole doping via anionic pairs provides an effective path to tune the huge-gap semiconductor band structures and to develop high efficient catalysts for solar-driven water splitting.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/C6CP02047J</identifier><language>eng</language><ispartof>Physical chemistry chemical physics : PCCP, 2016, Vol.18 (26), p.17517-17524</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76J-251036354375d2a029b715aadaf1ba1951cf3a2455b949704f171e7b8bc9c09d3</citedby><cites>FETCH-LOGICAL-c76J-251036354375d2a029b715aadaf1ba1951cf3a2455b949704f171e7b8bc9c09d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930</link.rule.ids></links><search><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Meng, Jie</creatorcontrib><creatorcontrib>Li, Qunxiang</creatorcontrib><creatorcontrib>Yang, Jinlong</creatorcontrib><title>Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis</title><title>Physical chemistry chemical physics : PCCP</title><description>Double-hole doping is an effective approach to engineer the band structures of semiconductors for enhancing the photoelectrochemical performance. Here, we explore the anionic monodoping ( i.e. N, C, and P) and codoping ( i.e. N + N, C + S, and N + P pairs) effects on the electronic structures and photocatalytic activities of ZrO 2 by performing extensive density functional theory calculations. Upon anionic monodoping, several unoccupied impurity states appear within the band gap, which may trap the photogenerated carriers and then reduce the photocatalytic efficiency. Remarkably, double-hole doping via introducing three anionic (N + N), (C + S), and (N + P) codoping pairs in ZrO 2 can not only effectively narrow the band gap, but can also create several fully filled delocalized intermediate bands for preventing the recombination of the photogenerated electron–hole pairs. Moreover, the band edge positions matching well with the redox potentials of water and the improved visible light absorption ability indicate that the three examined codoped ZrO 2 systems are promising photocatalysts for visible light water splitting. In short, double-hole doping via anionic pairs provides an effective path to tune the huge-gap semiconductor band structures and to develop high efficient catalysts for solar-driven water splitting.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKAzEARYMoWKsbvyBrIZrnpFnKqNVSqEJXboY8ZyJTMyQzQv_eFkVX92zu5XIAuCb4lmCm7uqqfsUUc7k6ATPCK4YUXvDTP5bVObgo5QNjTARhM_D2kCbTe9Sl3kObXBq8g93UetTqARa_izZ9usmOKcP3vIEUhgN9xRKPrT623QiHLo3J6lH3-xLLJTgLui_-6jfnYPv0uK2f0XqzfKnv18jKaoWoOPytmOBMCkc1pspIIrR2OhCjiRLEBqYpF8IoriTmgUjipVkYqyxWjs3Bzc-szamU7EMz5LjTed8Q3BxdNP8u2Ddrq1Ey</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Wang, Jiajun</creator><creator>Huang, Jing</creator><creator>Meng, Jie</creator><creator>Li, Qunxiang</creator><creator>Yang, Jinlong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2016</creationdate><title>Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis</title><author>Wang, Jiajun ; Huang, Jing ; Meng, Jie ; Li, Qunxiang ; Yang, Jinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76J-251036354375d2a029b715aadaf1ba1951cf3a2455b949704f171e7b8bc9c09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Meng, Jie</creatorcontrib><creatorcontrib>Li, Qunxiang</creatorcontrib><creatorcontrib>Yang, Jinlong</creatorcontrib><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiajun</au><au>Huang, Jing</au><au>Meng, Jie</au><au>Li, Qunxiang</au><au>Yang, Jinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2016</date><risdate>2016</risdate><volume>18</volume><issue>26</issue><spage>17517</spage><epage>17524</epage><pages>17517-17524</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Double-hole doping is an effective approach to engineer the band structures of semiconductors for enhancing the photoelectrochemical performance. Here, we explore the anionic monodoping ( i.e. N, C, and P) and codoping ( i.e. N + N, C + S, and N + P pairs) effects on the electronic structures and photocatalytic activities of ZrO 2 by performing extensive density functional theory calculations. Upon anionic monodoping, several unoccupied impurity states appear within the band gap, which may trap the photogenerated carriers and then reduce the photocatalytic efficiency. Remarkably, double-hole doping via introducing three anionic (N + N), (C + S), and (N + P) codoping pairs in ZrO 2 can not only effectively narrow the band gap, but can also create several fully filled delocalized intermediate bands for preventing the recombination of the photogenerated electron–hole pairs. Moreover, the band edge positions matching well with the redox potentials of water and the improved visible light absorption ability indicate that the three examined codoped ZrO 2 systems are promising photocatalysts for visible light water splitting. In short, double-hole doping via anionic pairs provides an effective path to tune the huge-gap semiconductor band structures and to develop high efficient catalysts for solar-driven water splitting.</abstract><doi>10.1039/C6CP02047J</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2016, Vol.18 (26), p.17517-17524
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_C6CP02047J
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Double-hole codoped huge-gap semiconductor ZrO 2 for visible-light photocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double-hole%20codoped%20huge-gap%20semiconductor%20ZrO%202%20for%20visible-light%20photocatalysis&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wang,%20Jiajun&rft.date=2016&rft.volume=18&rft.issue=26&rft.spage=17517&rft.epage=17524&rft.pages=17517-17524&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/C6CP02047J&rft_dat=%3Ccrossref%3E10_1039_C6CP02047J%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true